UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles - Publication - Bridge of Knowledge

Search

UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles

Abstract

The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhances the separation and recoverable properties of nanosized TiO2 photocatalyst. Metal-modified (Me = Pd, Au, Pt, Cu) TiO2/SiO2@Fe3O4 nanocomposites were prepared by an ultrasonic-assisted sol-gel method. All prepared samples were characterized by X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), Mott-Schottky analysis and photoluminescence spectroscopy (PL). Phenol oxidation pathways of magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles proceeded by generation of reactive oxygen species, which oxidized phenol to benzoquinone, hydroquinone and catechol. Benzoquinone and maleic acid were products, which were determined in the hydroquinone oxidation pathway. The highest mineralization rate was observed for Pd-TiO2/SiO2@Fe3O4 and Cu-TiO2/SiO2@Fe3O4 photocatalysts, which produced the highest concentration of catechol during photocatalytic reaction. For Pt-TiO2/SiO2@Fe3O4 nanocomposite, a lack of catechol after 60 min of irradiation resulted in low mineralization rate (CO2 formation). It is proposed that the enhanced photocatalytic activity of palladium and copper-modified photocatalysts is related to an increase in the amount of adsorption sites and efficient charge carrier separation, whereas the keto-enol tautomeric equilibrium retards the rate of phenol photomineralization on Au-TiO2/SiO2@Fe3O4. The magnetization hysteresis loop indicated that the obtained hybrid photocatalyst showed magnetic properties and therefore could be easily separated after treatment process

Citations

  • 6 0

    CrossRef

  • 0

    Web of Science

  • 6 7

    Scopus

Cite as

Full text

download paper
downloaded 54 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Nanomaterials no. 8, pages 1 - 20,
ISSN: 2079-4991
Language:
English
Publication year:
2018
Bibliographic description:
Wysocka I., Kowalska E., Trzciński K., Łapiński M. S., Nowaczyk G., Zielińska-Jurek A.: UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles// Nanomaterials. -Vol. 8, iss. 28 (2018), s.1-20
DOI:
Digital Object Identifier (open in new tab) 10.3390/nano8010028
Bibliography: test
  1. Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 2010, 216, 179-182. [CrossRef] open in new tab
  2. Wang, K.; Wei, Z.; Ohtani, B.; Kowalska, E. Interparticle electron transfer in methanol dehydrogenation on platinum-loaded titania particles prepared from P25. Catal. Today 2017. [CrossRef] open in new tab
  3. Bagheri, S.; Julkapli, N.M. Magnetite hybrid photocatalysis: Advance environmental remediation. Rev. Inorg. Chem. 2016, 36, 135-151. [CrossRef] open in new tab
  4. Beydoun, D.; Amal, R.; Low, G.K.-C.; McEvoy, S. Novel Photocatalyst:Titania-Coated Magnetite. Activity and Photodissolution. J. Phys. Chem. B 2000, 104, 4387-4396. [CrossRef] open in new tab
  5. Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A Chem. 2002, 180, 193-200. [CrossRef] open in new tab
  6. Bagheri, S.; Julkapli, N.M. Modified iron oxide nanomaterials: Functionalization and application. J. Magn. Magn. Mater. 2016, 416, 117-133. [CrossRef] open in new tab
  7. Yu, X.; Liu, S.; Yu, J. Superparamagnetic γ-Fe 2 O 3 @SiO 2 @TiO 2 composite microspheres with superior photocatalytic properties. Appl. Catal. B Environ. 2011, 104, 12-20. [CrossRef] open in new tab
  8. Liu, J.; Yang, S.; Wu, W.; Tian, Q.; Cui, S.; Dai, Z.; Ren, F.; Xiao, X.; Jiang, C. 3D Flowerlike α-Fe 2 O 3 @TiO 2 Core-Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance. ACS Sustain. Chem. Eng. 2015, 3, 2975-2984. [CrossRef] open in new tab
  9. Zielińska-Jurek, A.; Bielan, Z.; Dudziak, S.; Wolak, I.; Sobczak, Z.; Klimczuk, T.; Hupka, J. Design and Application of Magnetic Photocatalysts for Water Treatment. The Effect of Particle Charge on Surface Functionality. Catalysts 2017, 7. [CrossRef] open in new tab
  10. Jia, Y.; Liu, J.; Cha, S.; Choi, S.; Park, Y.C.; Liu, C. Magnetically separable Au-TiO 2 /nanocube ZnFe 2 O 4 composite for chlortetracycline removal in wastewater under visible light. J. Ind. Eng. Chem. 2017, 47, 303-314. [CrossRef] open in new tab
  11. Laohhasurayotin, K.; Pookboonmee, S.; Viboonratanasri, D. Preparation of magnetic photocatalyst nanoparticles-TiO 2 /SiO 2 /Mn-Zn ferrite-and its photocatalytic activity influenced by silica interlayer. Mater. Res. Bull. 2012, 47, 1500-1507. [CrossRef] open in new tab
  12. Chen, C.; Jaihindh, D.; Hu, S.; Fu, Y. Magnetic recyclable photocatalysts of Ni-Cu-Zn ferrite@SiO 2 @TiO 2 @Ag and their photocatalytic activities. J. Photochem. Photobiol. A Chem. 2017, 334, 74-85. [CrossRef] open in new tab
  13. Vaiano, V.; Iervolino, G.; Sannino, D.; Murcia, J.J.; Hidalgo, M.C.; Ciambelli, P.; Navío, J.A. Photocatalytic removal of patent blue V dye on Au-TiO 2 and Pt-TiO 2 catalysts. Appl. Catal. B Environ. 2016, 188, 134-146. [CrossRef] open in new tab
  14. Hamzezadeh-Nakhjavani, S.; Tavakoli, O.; Akhlaghi, S.P.; Salehi, Z.; Esmailnejad-Ahranjani, P.; Arpanaei, A. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO 2 nanocomposite photocatalysts under visible light irradiation. Environ. Sci. Pollut. Res. 2015, 22, 18859-18873. [CrossRef] [PubMed] open in new tab
  15. Long, N.Q.; Uyen, N.T.T.; Hoang, T.D.; Trung, D.B. Preparation, characterization and photocatalytic activity under visible light of magnetic N-dopped TiO 2 . Int. J. Renew. Energy Environ. Eng. 2015, 3, 2-5.
  16. Larumbe, S.; Monge, M.; Gomez-Polo, C. Magnetically separable photocatalyst Fe 3 O 4 /SiO 2 /N-TiO 2 hybrid nanostructure. IEEE Trans. Mag. 2014, 50, 6971-6975. [CrossRef] open in new tab
  17. Kumar, A.; Khan, M.; Fang, L.; Lo, I.M.C. Visible-light-driven N-TiO 2 @SiO 2 @Fe 3 O 4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs. J. Hazard. Mater. 2017, 1-9. [CrossRef] open in new tab
  18. Zielińska-Jurek, A. Progress, challenge, and perspective of bimetallic TiO 2 -based photocatalysts. J. Nanomater. 2015, 1-17. [CrossRef] open in new tab
  19. Choi, K.; Park, S.; Joo, B.; Jung, J. Recyclable Ag-coated Fe 3 O 4 @TiO 2 for efficient photocatalytic oxidation of chlorophenol. Surf. Coat. Technol. 2017, 320, 240-245. [CrossRef] open in new tab
  20. Khojasteh, H.; Salavati-Niasari, M.; Mazhari, M.-P.; Hamadanian, M. Preparation and characterization of Fe 3 O 4 @SiO 2 @TiO 2 @Pd and Fe 3 O 4 @SiO 2 @TiO 2 @Pd-Ag nanocomposites and their utilization in enhanced degradation systems. RSC Adv. 2016, 6, 78043-78052. [CrossRef] open in new tab
  21. Li, X.; Liu, D.; Song, S.; Zhang, H. Fe 3 O 4 @SiO 2 @TiO@Pt Hierarchical Core-Shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle. Cryst. Growth Des. 2014, 14, 5506-5511. [CrossRef] open in new tab
  22. Mohammadi-Aghdam, S.; Sarkhosh, B.; Tajoddin, N.N. Recyclable Fe 3 O 4 /SiO 2 /TiO 2 /Cu nanocomposites: Synthesis, characterization and investigation of the photocatalytic and magnetic property. J. Mater. Sci. Mater. Electron. 2017, 28, 9456-9463. [CrossRef] open in new tab
  23. Chun-Te Lin, J.; Sopajaree, K.; Jitjanesuwan, T.; Lu, M.-C. Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep. Purif. Technol. 2017, 191, 233-243. [CrossRef] open in new tab
  24. Kim, S.; Hwang, S.; Choi, W. Visible Light Active Platinum-Ion-Doped TiO 2 Photocatalyst. J. Phys. Chem. B 2005, 109, 24260-24267. [CrossRef] [PubMed] open in new tab
  25. Colón, G.; Maicu, M.; Hidalgo, M.C.; Navío, J.A.; Kubacka, A.; Fernández-García, M. Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO 2 . J. Mol. Catal. A Chem. 2010, 320, 14-18. [CrossRef] open in new tab
  26. Zielińska-Jurek, A.; Zaleska, A. Ag/Pt-modified TiO 2 nanoparticles for toluene photooxidation in the gas phase. Catal. Today 2014, 230, 104-111. [CrossRef] open in new tab
  27. Pham, T.; Lee, B.; Pham-Cong, D. Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver-doped TiO 2 /PU under visible light irradiation. RSC Adv. 2016, 6, 25346-25358. [CrossRef] open in new tab
  28. Yu, H.; Wang, X.; Sun, H.; Huo, M. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO 2 nanotube film. J. Hazard. Mater. 2010, 184, 753-758. [CrossRef] [PubMed] open in new tab
  29. Grover, I.S.; Prajapat, R.C.; Singh, S.; Pal, B. Highly photoactive Au-TiO 2 nanowires for improved photo-degradation of propiconazole fungicide under UV/sunlight irradiation. Sol. Energy 2017, 144, 612-618. [CrossRef] open in new tab
  30. Pham, T.N.; Shi, D.; Resasco, D.E. Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO 2 catalyst. J. Catal. 3014, 334, 149-158. [CrossRef] open in new tab
  31. Giannakas, A.E.; Antonopoulou, M.; Papavasiliou, J.; Deligiannakis, Y.; Konstantinou, I. Photocatalytic performance of Pt-TiO 2 , Pt-N-TiO 2 and Pt-N/F-TiO 2 towards simultaneous Cr(VI) reduction/benzoic acid oxidation: Insights into photogenerated charge carrier dynamics and catalyst properties. J. Photochem. Photobiol. A Chem. 2017, 349, 25-35. [CrossRef] open in new tab
  32. Ding, Q.; Chen, S.; Shang, F.; Liang, J.; Liu, C. Cu 2 O/Ag co-deposited TiO 2 nanotube array film prepared by pulse-reversing voltage and photocatalytic properties. Nanotechnology 2016, 27, 485705. [CrossRef] [PubMed] open in new tab
  33. Yang, Z.; Lu, J.; Ye, W.; Yu, C.; Chang, Y. Preparation of Pt/TiO 2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 2017, 392, 472-480. [CrossRef] open in new tab
  34. Theurich, J.; Lindner, M.; Bahnemann, D.W. Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir 1996, 12, 6368-6376. [CrossRef] open in new tab
  35. Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B 2005, 109, 5143-5149. [CrossRef] [PubMed] open in new tab
  36. Montoya, J.F.; Ivanova, I.; Dillert, R.; Bahnemann, D.W.; Salvador, P.; Peral, J. Catalytic role of surface oxygens in TiO 2 photooxidation reactions: Aqueous benzene photooxidation with Ti 18 O 2 under anaerobic conditions. J. Phys. Chem. Lett. 2013, 4, 1415-1422. [CrossRef] [PubMed] open in new tab
  37. Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J.A.; Bechstein, R.; Kiely, C.J.; Hutchings, G.J.; et al. Promotion of Phenol Photodecomposition over TiO 2 Using Au, Pd, and Au-Pd nanoparticles. ACS NANO 2012, 6, 6284-6292. [CrossRef] [PubMed] open in new tab
  38. Li, L.; Salvador, P.A.; Rohrer, G.S. Photocatalysts with internal electric fields. Nanoscale 2014, 6, 24-42. [CrossRef] [PubMed] open in new tab
  39. Sobczyński, A.; Duczmal, L.; Zmudziński, W. Phenol destruction by photocatalysis on TiO 2 : An attempt to solve the reaction mechanism. J. Mol. Catal. A Chem. 2004, 213, 225-230. [CrossRef] open in new tab
  40. Zhang, L.; Kanki, T.; Sano, N.; Toyoda, A. Pathways and kinetics on photocatalytic destruction of aqueous phenol. Environ. Monit. Assess. 2006, 115, 395-403. [CrossRef] [PubMed] open in new tab
  41. Diesen, V.; Jonsson, M. Comment on the use of phenols as probes for the kinetics of heterogeneous photocatalysis. Appl. Catal. B Environ. 2014, 158-159, 429-431. [CrossRef] open in new tab
  42. Hui, C.; Shen, C.; Tian, J.; Bao, L.; Ding, H.; Li, C.; Tian, Y.; Shi, X.; Gao, H.-J. Core-shell Fe 3 O 4 @SiO 2 nanoparticles synthesized with well-dispersed hydrophilic Fe 3 O 4 seeds. Nanoscale 2011, 3, 701-705. [CrossRef] [PubMed] open in new tab
  43. Belessi, V.; Lambropoulou, D.; Konstantinou, I.; Zboril, R.; Tucek, J.; Jancik, D.; Albanis, T.; Petridis, D. Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. Appl. Catal. B Environ. 2009, 87, 181-189. [CrossRef] open in new tab
  44. Chi, Y.; Yuan, Q.; Li, Y.; Zhao, L.; Li, N.; Li, X.; Yan, W. Magnetically separable Fe 3 O 4 @SiO 2 @TiO 2 -Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. J. Hazard. Mater. 2013, 262, 404-411. [CrossRef] [PubMed] open in new tab
  45. Liu, H.; Jia, Z.; Ji, S.; Zheng, Y.; Li, M.; Yang, H. Synthesis of TiO 2 /SiO 2 @Fe 3 O 4 magnetic microspheres and their properties of photocatalytic degradation dyestuff. Catal. Today 2011, 175, 293-298. [CrossRef] open in new tab
  46. Xiong, L.; Li, J.; Yang, B.; Yu, Y. Ti 3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 2012, 1-13. [CrossRef] open in new tab
  47. Markowska-Szczupak, A.; Wang, K.; Rokicka, P.; Endo, M.; Wei, Z.; Ohtani, B.; Morawski, A.W.; Kowalska, E. The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. J. Photochem. Photobiol. B Biol. 2015, 151, 54-62. [CrossRef] [PubMed] open in new tab
  48. Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO 2 photocatalysts. Appl. Surf. Sci. 2015, 353, 317-325. [CrossRef] open in new tab
  49. Grabowska, E.; Zaleska, A.; Sorgues, S.; Kunst, M.; Etcheberry, A.; Colbeau-Justin, C.; Remita, H. Modification of titanium(IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys. Chem. C 2013, 117, 1955-1962. [CrossRef] open in new tab
  50. Kowalska, E.; Rau, S.; Ohtani, B. Plasmonic titania photocatalysts active under UV and visible-light irradiation: Influence of gold amount, size, and shape. J. Nanotechnol. 2012, 2012, 361853. [CrossRef] open in new tab
  51. Kowalska, E.; Mahaney, O.O.P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344. [CrossRef] [PubMed] open in new tab
  52. Zielińska, A.; Skwarek, E.; Zaleska, A.; Gazda, M.; Hupka, J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009, 1, 1560-1566. [CrossRef] open in new tab
  53. Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46-55. [CrossRef] open in new tab
  54. Tanabe, I.; Ozaki, Y. Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO 2 studied by far-ultraviolet spectroscopy. Chem. Commun. 2014, 1, 2117-2119. [CrossRef] [PubMed] open in new tab
  55. Subramanian, V.; Wolf, E.; Kamat, P.V. Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO 2 Films? J. Phys. Chem. B 2001, 105, 11439-11446. [CrossRef] open in new tab
  56. Rashid, J.; Barakat, M.A.; Ruzmanova, Y.; Chianese, A. Fe 3 O 4 /SiO 2 /TiO 2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environ. Sci. Pollut. Res. 2015, 22, 3149-3157. [CrossRef] [PubMed] open in new tab
  57. Lv, K.; Guo, X.; Wu, X.; Li, Q.; Ho, W.; Li, M.; Ye, H.; Du, D. Photocatalytic selective oxidation of phenol to produce dihydroxybenzenes in a TiO 2 /UV system: Hydroxyl radical versus hole. Appl. Catal. B Environ. 2016, 199, 405-411. [CrossRef] open in new tab
  58. Zielińska-Jurek, A.; Kowalska, E.; Sobczak, J.W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Appl. Catal. B Environ. 2011, 101, 504-514. [CrossRef] open in new tab
  59. Kowalska, E.; Janczarek, M.; Rosa, L.; Juodkazis, S.; Ohtani, B. Mono-and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation. Catal. Today 2014, 230, 131-137. [CrossRef] open in new tab
  60. Kalan, R.E.; Yaparatne, S.; Amirbahman, A.; Tripp, C.P. P25 titanium dioxide coated magnetic particles: Preparation, characterization and photocatalytic activity. Appl. Catal. B Environ. 2016, 187, 249-258. [CrossRef] open in new tab
  61. Emeline, A.V.; Zhang, X.; Murakami, T.; Fujishima, A. Activity and selectivity of photocatalysts in photodegradation of phenols. J. Hazard. Mater. 2012, 121-212, 54-160. [CrossRef] [PubMed] open in new tab
  62. Azevedo, E.B.; Aquino Neto, F.R.; Dezotti, M. TiO 2 -Photocatalyzed degradation of phenol in saline media in an annular reactor: Hydrodynamics, lumped kinetics, intermediates, and acute toxicity. Braz. J. Chem. Eng. 2009, 26, 75-87. [CrossRef] open in new tab
  63. Montoya, J.F.; Velásquez, J.A.; Salvador, P. The direct-indirect kinetic model in photocatalysis: A reanalysis of phenol and formic acid degradation rate dependence on photon flow and concentration in TiO 2 aqueous dispersions. Appl. Catal. B Environ. 2009, 88, 50-58. [CrossRef] open in new tab
  64. Miyazaki, T.; Katsumura, Y.; Lin, M.; Muroya, Y.; Kudo, H.; Taguchi, M.; Asano, M.; Yoshida, M. Radiolysis of phenol in aqueous solution at elevated temperatures. Radiat. Phys. Chem. 2006, 75, 408-415. [CrossRef] open in new tab
  65. Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO 2 Vs platinum-supported TiO 2 . Appl. Catal. B Environ. 2014, 150-151, 107-115. [CrossRef] open in new tab
  66. Wei, Z.; Rosa, L.; Wang, K.; Endo, M.; Juodkazis, S.; Ohtani, B.; Kowalska, E. Size-controlled gold nanoparticles on octahedral anatase particles as efficient plasmonic photocatalyst. Appl. Catal. B Environ. 2017, 206, 393-405. [CrossRef] [PubMed] open in new tab
  67. Santos, A.; Yustos, P.; Quintanilla, A.; Rodríguez, S.; García-Ochoa, F. Route of the catalytic oxidation of phenol in aqueous phase. Appl. Catal. B Environ. 2002, 39, 97-113. [CrossRef] open in new tab
  68. Ishibashi, K.I.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of active oxidative species in TiO 2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2000, 2, 207-210. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 199 times

Recommended for you

Meta Tags