Zastosowanie materiałów odpadowych do produkcji biogazów, zwłaszcza biowodoru - Publication - Bridge of Knowledge

Search

Zastosowanie materiałów odpadowych do produkcji biogazów, zwłaszcza biowodoru

Abstract

Wyczerpywanie paliw kopalnych, będących obecnie głównymi źródłami energii oraz negatywny wpływ produktów ich spalania na środowisko, spowodowały wzrost zainteresowania produkcją biopaliw, jako obiecujących źródeł energii w przyszłości. Biogaz, a szczególnie biowodór, cechuje się wysoką wartością kaloryczną netto w porównaniu z innymi paliwami.

Cite as

Full text

download paper
downloaded 305 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-SA open in new tab

Keywords

Details

Category:
Conference activity
Type:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Title of issue:
XIV konferencja "Dla Miasta i Środowiska - Problemy Unieszkodliwiania Odpadów" strony 1 - 6
Language:
Polish
Publication year:
2018
Bibliographic description:
Kucharska K., Słupek E., Kamiński M. A.: Zastosowanie materiałów odpadowych do produkcji biogazów, zwłaszcza biowodoru// XIV konferencja "Dla Miasta i Środowiska - Problemy Unieszkodliwiania Odpadów"/ ed. Politechnika Warszawska Warszawa: , 2018, s.1-6
Bibliography: test
  1. M. S. Graboski RLM. Combustion of fat and vegetable oil derives fuels in diesel engines. Prog Energy Combust Sci 1998;24:125-64. open in new tab
  2. Zajic JE, Kosaric N, Brosseau JD. Microbial production of hydrogen. Adv. Biochem. Eng. Vol. 9, Berlin, Heidelberg: Springer Berlin Heidelberg; 1978, p. 57-109. doi:10.1007/BFb0048091. open in new tab
  3. Grimes CA, Varghese OK, Ranjan S. Light, Water, Hydrogen. 2008. doi:10.1007/978-0-387- 68238-9. open in new tab
  4. Sinha P, Pandey A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 2011;36:7460-78. doi:10.1016/j.ijhydene.2011.03.077. open in new tab
  5. Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol 2006;38:569-82. doi:10.1016/j.enzmictec.2005.09.015. open in new tab
  6. Momirlan M, Veziroglu T. Current status of hydrogen energy. Renew Sustain Energy Rev 2002;6:141-79. doi:10.1016/S1364-0321(02)00004-7. open in new tab
  7. Hallenbeck PC. Fundamentals of Biohydrogen. vol. #volume#. 1st ed. Copyright © 2013 open in new tab
  8. Elsevier BV. All rights reserved.; 2013. doi:10.1016/B978-0-444-59555-3.00002-7. open in new tab
  9. Nath K DD. Modeling and optimization of fermentative hydrogen production. Bioresour Technol 2011;102:8569-81. doi:10.1016/j.biortech.2011.03.108. open in new tab
  10. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 2007;32:172-84. doi:10.1016/j.ijhydene.2006.08.014. open in new tab
  11. Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 2002;27:1185-93. doi:10.1016/S0360-3199(02)00131-3. open in new tab
  12. Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Energy 2004;29:173-85. doi:10.1016/S0360-3199(03)00094-6. open in new tab
  13. Ivanova G, Rákhely G, Kovács KLKL. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 2009;34:3659-70. doi:10.1016/j.ijhydene.2009.02.082. open in new tab
  14. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, et al. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 2018. doi:10.1016/j.rser.2018.04.043. open in new tab
  15. Łukajtis R, Rybarczyk P, Kucharska K, Konopacka-Łyskawa D, Słupek E, Wychodnik K, et al. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre- treatment and enzymatic hydrolysis. Energies 2018;11. doi:10.3390/en11040886. open in new tab
  16. Jayalakshmi S, Joseph K, Sukumaran V. Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int J Hydrogen Energy 2009;34:8854-8. doi:10.1016/j.ijhydene.2009.08.048. open in new tab
  17. Zahedi S, Sales D, Romero LII, Solera R. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: Influence of organic loading rate XIV Konferencja DLA MIASTA I ŚRODOWISKA -Problemy Unieszkodliwiania Odpadów Warszawa, 26.11.2018 and microbial content of the solid waste. Bioresour Technol 2013;129:85-91. doi:10.1016/j.biortech.2012.11.003. open in new tab
  18. Gomez X, Moran A, Cuetos MJ, Sanchez ME, G??mez X, Mor??n A, et al. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two- phase process. J Power Sources 2006;157:727-32. doi:10.1016/j.jpowsour.2006.01.006. open in new tab
  19. Chu CFC-F, Xu K-QKQK-Q, Li YYY-Y, Inamori Y. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrogen Energy 2012;37:10611-8. doi:10.1016/j.ijhydene.2012.04.048. open in new tab
  20. Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, et al. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrogen Energy 2010;35:7730-7. doi:10.1016/j.ijhydene.2010.05.063. open in new tab
  21. Mohd Yasin NH, Rahman NA, Man HC, Mohd Yusoff MZ, Hassan MA. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hydrogen Energy 2011;36:9571-80. doi:10.1016/j.ijhydene.2011.05.048. open in new tab
  22. Xing Y, Li Z, Fan Y, Hou H. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res 2010;17:392-9. doi:10.1007/s11356-009-0187-4. open in new tab
  23. Tang G-L, Huang J, Sun Z-J, Tang Q-Q, Yan C-H, Liu G-Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 2008;106:80-7. doi:10.1263/jbb.106.80. open in new tab
  24. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 2009;100:3713-7. doi:10.1016/j.biortech.2009.01.025. open in new tab
  25. Dounavis AS, Ntaikou I, Lyberatos G. Production of biohydrogen from crude glycerol in an upflow column bioreactor. Bioresour Technol 2015;198:701-8. doi:10.1016/j.biortech.2015.09.072. open in new tab
  26. Chu C-Y, Tung L, Lin C-Y. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. Int J Hydrogen Energy 2013;38:15849-55. doi:10.1016/j.ijhydene.2013.07.088. open in new tab
  27. Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, et al. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 2006;31:1306- 13. doi:10.1016/j.ijhydene.2005.11.018. open in new tab
  28. Kucharska K, Hołowacz I, Konopacka-Łyskawa D, Rybarczyk P, Kami M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels 2018. doi:10.1016/j.renene.2018.06.018. open in new tab
  29. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018;23:2937. doi:10.3390/molecules23112937. open in new tab
  30. Muri P, Osojnik-Črnivec IG, Djinovič P, Pintar A. Biohydrogen Production from Simple Carbohydrates with Optimization of Operating Parameters. Acta Chim Slov 2016;63:154-64. doi:10.17344/acsi.2015.2085. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 271 times

Recommended for you

Meta Tags