Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 10728
displaying 1000 best results Help
Search results for: REGRESSION-BASED DECOMPOSITION
-
Cobalt-based Catalysts for Ammonia Decomposition
Publication -
Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling
PublicationThe modelling of a system containing implants used in ventral hernia repair and human tissue suffers from many uncertainties. Thus, a probabilistic approach is needed. The goal of this study is to define an efficient numerical method to solve non-linear biomechanical models supporting the surgeon in decisions about ventral hernia repair. The model parameters are subject to substantial variability owing to, e.g., abdominal wall...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublicationAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Photocatalytic Decomposition of Acetaldehyde on Different TiO2-Based Materials: A Review
Publication -
Optimization-Based Robustness Enhancement of Compact Microwave Component Designs with Response Feature Regression Surrogates
PublicationThe ability to evaluate the effects of fabrication tolerances and other types of uncertainties is a critical part of microwave design process. Improving the immunity of the device to parameter deviations is equally important, especially when the performance specifications are stringent and can barely be met even assuming a perfect manufacturing process. In the case of modern miniaturized microwave components of complex topologies,...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Nickel-based catalysts for electrolytic decomposition of ammonia towards hydrogen production
PublicationNickel is an attractive metal for electrochemical applications because it is abundant, cheap, chemically resilient, and catalytically active towards many reactions. Nickel-based materials (metallic nickel, its alloys, oxides, hydroxides, and composites) have been also considered as promising electrocatalysts for ammonia oxidation. The electrolysis of ammonia aqueous solution results in evolution of gaseous hydrogen and nitrogen....
-
Characterization of FeCo based catalyst for ammonia decomposition. The effect of potassium oxide
Publication -
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublicationThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
Rapid Design Tuning of Miniaturized Rat-Race Couplers Using Regression-Based Equivalent Network Surrogates
PublicationA simple technique for fast design tuning of compact rat-race couplers is presented. Our approach involves equivalent circuit representation, corrected by nonlinear functions of frequency with coefficients extracted through nonlinear regression. At the same time, the tuning process connects two levels of coupler representation: EM simulation of the entire circuit and re-optimization of the coupler building blocks (slow-wave cells...