Didn't find any results in this catalog!
But we have some results in other catalogs.Search results for: metody uczenia sieci neuronowych
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
WYKORZYSTANIE SIECI NEURONOWYCH I METODY WEKTORÓW NOŚNYCH SVM W PROCESIE ROZPOZNAWANIA AKTYWNOŚCI RUCHOWEJ PACJENTÓW DOTKNIĘTYCH CHOROBĄ PARKINSONA
PublicationChoroba Parkinsona (ang. PD - Parkinson Disease) zaliczana jest do grupy chorób neurodegeneracyjnych. Jest to powoli postępująca choroba zwyrodnieniowa ośrodkowego układu nerwowego. Jej powstawanie związane jest z zaburzeniem produkcji dopaminy przez komórki nerwowe mózgu. Choroba manifestuje się zaburzeniami ruchowymi. Przyczyna występowania tego typu zaburzeń nie została do końca wyjaśniona. Leczenie osób dotkniętych PD oparte...
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...
-
Comparative study of learning methods for artificial network
PublicationW artykule przedstawiono wyniki badań porównawczych metod uczenia sieci neuronowych takich jak: metoda propagacji wstecznej błędów, rekurencyjna metoda najmniejszych kwadratów, metoda Zangwill'a, metoda algorytmów ewolucyjnych. Celem tych badań jest dobieranie najefektywniejszej metody uczenia do projektowania adaptacyjnego neuronowego regulatora napięcia generatora synchronicznego.metody uczenia, sieć neuronowa, neuronowy regulator...
-
Sieci neuronowe jako alternatywny sposób uzyskania modelu obliczeniowego
PublicationW pracy zaprezentowano i omówiono rodzaje sieci neuronowych, obszary ich zastosowań oraz metody uczenia. Przedstawiono teorie działania oraz ich interpretacje matematyczną i numeryczną. Szczególną uwagę zwrócono na możliwości uzyskania modelu obliczeniowego oraz obszarów jego stosowania przez wzgląd na unikalne cech Sztucznych Sieci Neuronowych (SSN). Jako przykład pracy sieci zaprezentowano model obliczeniowy identyfikujący własności...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Comparative study of methods for artificial neural network training.
PublicationPrzedstawiono wyniki badań porównawczych następujących metod uczenia sieci neuronowych: propagacji wstecznej błędów, rekursywnej metody najmniejszych kwadratów, metody Zangwill'a i algorytmów ewolucyjnych. Badania dotyczyły projektowania adaptacyjnego regulatora neuronowego napięcia generatora synchronicznego.
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Wojciech Jędruch dr hab. inż.
People