Filters
total: 7632
filtered: 1348
-
Catalog
- Publications 3105 available results
- Journals 42 available results
- Conferences 2 available results
- People 156 available results
- Inventions 6 available results
- Projects 17 available results
- Laboratories 3 available results
- Research Teams 4 available results
- Research Equipment 28 available results
- e-Learning Courses 1110 available results
- Events 57 available results
- Open Research Data 3102 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: industry 4.0
-
The Use of Sustainability Reporting Instruments in the Global Airline Industry in Financial Year 2019
Open Research DataThis dataset provides an overview of the GRI topic-specific disclosures global passenger airline companies reported in their 2019 financial year sustainability reports and the specific SDGs they addressed. Additionally, it includes information on the frequency of application of other well-known SR instruments (i.e., SASB, IIRC, CDSB, CDP, UNGC, ISO...
-
The largest companies in the TSL industry in Poland in 2011
Open Research DataThe data contained in the dataset shows that the most successful transport, forwarding and logistics company in Poland in 2011 was PKP CARGO S.A. The company is the largest carrier in the country, while in the European Union it ranks second in terms of freight transport.
-
Long-term measurement of physiological parameters - patient 4 (serie 4)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
The luminescence study ofNaK2Li[Li3SiO4]4:Eu coumpounds.
Open Research DataNarrowband green phosphors with high quantum efficiency are required for backlighting white light-emitting diode (WLED) devices. Materials from the A[Li3SiO4]4:Eu2+ family have recently been proposed as having superior properties to industry-standard β-SiAlON green phosphors. Here, we show that a cheap, easily synthesized host NaK2Li[Li3SiO4]4 (NKLLSO)...
-
Mechanical properties of VL E27 steel for shipbuilding – tensile test in 0°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture documentation (test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding –SEM fracture investigation (Charpy test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – 3D model of fracture (test in 0°C)
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – fracture toughness test in 0°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Mechanical properties of VL E27 steel for shipbuilding – impact in test 0°C, 3D model of fracture
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Long-term measurement of physiological parameters - patient 4 (serie 3)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 6)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 11)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 19)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,1 V at 561 mA. Sample 71, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,1 V and discharged to 10 mV by constant current 561 mA. Sample 71, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 306 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 306 mA. Experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,75 V at 241 mA. Sample 24, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,75 V and discharged to 10 mV by constant current 241 mA, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 204 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 204 mA. Experiment run #4. This experiment was preceded by experiment 10.34808/jf84-x137. The images were taken with thermographic camera VigoCAM V50....
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #4. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 180 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Calibration of NTC 10k thermistors in temperature of 0 C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
The luminescence study of Sc2(1–x)Ga2xO3:Cr3+/4+ coumpounds
Open Research DataThe growing interest in the use of near-infrared (NIR) radiation for spectroscopy, optical communication, and medical applications spanning both NIR-I (700–900 nm) and NIR-II (900–1700 nm) has driven the need for new NIR light sources. NIR phosphor-converted light-emitting diodes (pc-LEDs) are expected to replace traditional lamps mainly due to their...
-
Long-term measurement of physiological parameters (4)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.Long-term (up to 90 minutes) measurement of physiological parameters was performed on the healthy...
-
Calculations of the resistance values of 20 thermistors at 0°C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.