Filters
total: 38
filtered: 10
-
Catalog
Chosen catalog filters
Search results for: Property Graphs
-
Named Property Graphs
Publication -
Serialization for Property Graphs
Publication -
Correction to: Serialization for Property Graphs
Publication -
On-line P-coloring of graphs
PublicationFor a given induced hereditary property P, a P-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property P. We consider the effectiveness of on-line P-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function...
-
Algorithms for testing security in graphs
PublicationIn this paper we propose new algorithmic methods giving with the high probability the correct answer to the decision problem of security in graphs. For a given graph G and a subset S of a vertex set of G we have to decide whether S is secure, i.e. every subset X of S fulfils the condition: |N[X] \cap S| >= |N[X] \ S|, where N[X] is a closed neighbourhood of X in graph G. We constructed a polynomial time property pseudotester based...
-
Domination-Related Parameters in Rooted Product Graphs
PublicationAbstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.
-
Parity vertex colouring of graphs
PublicationA parity path in a vertex colouring of a graph is a path along which each colour is used an even number of times. Let Xp(G) be the least number of colours in a proper vertex colouring of G having no parity path. It is proved that for any graph G we have the following tight bounds X(G) <= Xp(G) <=|V(G)|− a(G)+1, where X(G) and a(G) are the chromatic number and the independence number of G, respectively. The bounds are improved for...
-
EvOLAP Graph – Evolution and OLAP-Aware Graph Data Model
PublicationThe objective of this paper is to propose a graph model that would be suitable for providing OLAP features on graph databases. The included features allow for a multidimensional and multilevel view on data and support analytical queries on operational and historical graph data. In contrast to many existing approaches tailored for static graphs, the paper addresses the issue for the changing graph schema. The model, named Evolution...
-
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
PublicationWe study the classical and quantum values of a class of one-and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR(XOR-d) games we study are a subclass of the well-known linear games. We introduce a 'constraint graph' associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the...
-
Total domination in versus paired-domination in regular graphs
PublicationA subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...