Search results for: QUANTUM KEY DISTRIBUTION - Bridge of Knowledge

Search

Search results for: QUANTUM KEY DISTRIBUTION

Filters

total: 3147
filtered: 2809

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: QUANTUM KEY DISTRIBUTION

  • Device-independent quantum key distribution based on measurement inputs

    Publication

    - PHYSICAL REVIEW A - Year 2015

    We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key....

    Full text available to download

  • Quantum key distribution based on private states: Unconditional security over untrusted channels with zero quantum capacity

    Publication
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • D. Leung
    • J. Oppenheim

    - IEEE TRANSACTIONS ON INFORMATION THEORY - Year 2008

    In this paper, we prove unconditional security for a quantum key distribution (QKD) protocol based on distilling pbits (twisted ebits) from an arbitrary untrusted state that is claimed to contain distillable key. Our main result is that we can verify security using only public communication-via parameter estimation of the given untrusted state. The technique applies even to bound-entangled states, thus extending QKD to the regime...

  • Unifying classical and quantum key distillation

    Publication
    • M. Christandl
    • A. Ekert
    • M. Horodecki
    • P. Horodecki
    • J. Oppenheim
    • R. Renner

    - Year 2007

    Przypuśćmy, że dwie oddalone od siebie osoby, Alicja i Bob, oraz osoba z nimi niewspółpracująca, Ewa, mają dostęp do systemów kwantowych przygotowanych w stanie rho_ABE. Ponadto Alicja i Bob mogą używać lokalnych operacji i uwiarygodnionej komunikacji publicznej. Celem Alicji i Boba jest ustanowienie klucza, który nie będzie znany Ewie. Nasze badania inicjują podejście do wspomnianego zagadnienia oparte na unifikacji dwóch standardowych...

  • General paradigm for distilling classical key from quantum states

    Publication

    - IEEE TRANSACTIONS ON INFORMATION THEORY - Year 2009

    In this paper, we develop a formalism for distilling aclassical key from a quantum state in a systematic way, expandingon our previous work on a secure key from bound entanglement(Horodecki et al., 2005). More detailed proofs, discussion, andexamples are provided of the main results. Namely, we demonstratethat all quantum cryptographic protocols can be recast in away which looks like entanglement theory, with the only changebeing...

    Full text to download in external service

  • On the distillation of cryptographic key from multipartie entangled quantum states

    Publication

    - Year 2008

    Celem pracy było uzupełnienie ogólnego paradygmatu destylacji bezpiecznego klucza kryptograficznego z dwucząstkowych stanów splątanych, a w szczegolności znalezienie nowych konstrukcji stanów kwantowych o splątaniu związanym z niezerowym destylowanym kluczem kryptograficznym. Kolejnym celem pracy było uogólnienie powyższego paradygmatu dwucząstkowego na przypadek wielu cząstek. W szczególności sformułowanie definicji wielocząstkowych...

  • Applications of semi-definite optimization in quantum information protocols

    Publication

    - Year 2016

    This work is concerned with the issue of applications of the semi-definite programming (SDP) in the field of quantum information sci- ence. Our results of the analysis of certain quantum information protocols using this optimization technique are presented, and an implementation of a relevant numerical tool is introduced. The key method used is NPA discovered by Navascues et al. [Phys. Rev. Lett. 98, 010401 (2007)]. In chapter...

  • Progress towards a unified approach to entanglement distribution

    Publication

    - PHYSICAL REVIEW A - Year 2015

    Entanglement distribution is key to the success of secure communication schemes based on quantum mechanics, and there is a strong need for an ultimate architecture able to overcome the limitations of recent proposals such as those based on entanglement percolation or quantum repeaters. In this work we provide a broad theoretical background for the development of such technologies. In particular, we investigate the question of whether...

    Full text available to download

  • Increased Certification of Semi-device Independent Random Numbers using Many Inputs and More Postprocessing

    Publication
    • P. A. Mironowicz
    • A. Tavakoli
    • A. Hameedi
    • B. Marques
    • M. Pawłowski
    • M. Bourennane

    - NEW JOURNAL OF PHYSICS - Year 2016

    Quantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements...

    Full text available to download

  • Elemental and tight monogamy relations in nonsignaling theories

    Publication

    - PHYSICAL REVIEW A - Year 2014

    Physical principles constrain the way nonlocal correlations can be distributed among distant parties. These constraints are usually expressed by monogamy relations that bound the amount of Bell inequality violation observed among a set of parties by the violation observed by a different set of parties. We prove here that much stronger monogamy relations are possible for nonsignaling correlations by showing how nonlocal correlations...

    Full text available to download

  • Quantum privacy witness

    Publication

    - PHYSICAL REVIEW A - Year 2012

    While it is usually known that the mean value of a single observable is enough to detect entanglement or its distillability, the counterpart of such an approach in the case of quantum privacy has been missing. Here we develop the concept of a privacy witness, i.e., a single observable that may detect the presence of the secure key even in the case of bound entanglement. Then we develop the notion of secret-key estimation based...

    Full text available to download

  • Efficient bounds on quantum-communication rates via their reduced variants

    Publication

    - PHYSICAL REVIEW A - Year 2010

    We investigate one-way communication scenarios where Bob operating on his component can transfer some subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by means of their reduced versions. It is shown that in some cases they drastically improve their estimation.

    Full text available to download

  • The symmetric extendibility of quantum states

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement...

    Full text to download in external service

  • Multipartite secret key distillation and bound entanglement

    Publication

    Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable...

    Full text available to download

  • Quantum randomness protected against detection loophole attacks

    Publication
    • P. A. Mironowicz
    • G. Cañas
    • J. Cariñe
    • E. S. Gómez
    • J. F. Barra
    • A. Cabello
    • G. B. Xavier
    • G. Lima
    • M. Pawłowski

    - Quantum Information Processing - Year 2021

    Device and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks....

    Full text to download in external service

  • No-local-broadcasting theorem for multipartite quantum correlations

    Publication

    We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational...

    Full text to download in external service

  • Analytical studies of spectrum broadcast structures in quantum Brownian motion

    Spectrum broadcast structures are a new and fresh concept in the quantum-to-classical transition, introduced recently in the context of decoherence and the appearance of objective features in quantum mechanics. These are specific quantum state structures, responsible for the objectivization of the decohered state of a system. Recently, they have been demonstrated by means of the well-known quantum Brownian motion model of the recoilless...

    Full text to download in external service

  • Convex set of quantum states with positive partial transpose analysed by hit and run algorithm

    Publication
    • K. Szymański
    • B. Collins
    • T. Szarek
    • K. Życzkowski

    - Journal of Physics A-Mathematical and Theoretical - Year 2017

    The convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K >3 or K=3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive....

    Full text to download in external service

  • Quantum Coherence as a Resource

    Publication
    • A. Streltsov
    • G. Adesso
    • M. B. Plenio

    - REVIEWS OF MODERN PHYSICS - Year 2017

    The coherent superposition of states, in combination with the quantization of observables, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics....

    Full text available to download

  • Quantum entanglement

    Publication

    - REVIEWS OF MODERN PHYSICS - Year 2009

    All our former experience with application of quantum theory seems to say that what is predicted by quantum formalism must occur in the laboratory. But the essence of quantum formalism-entanglement, recognized by Einstein, Podolsky, Rosen, and Schrödinger-waited over 70 years to enter laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between...

    Full text to download in external service

  • Zero-knowledge convincing protocol on quantum bit is impossible

    Publication

    - Quantum Journal - Year 2017

    It is one of fundamental features of quantum formalism that o n one hand it provides a new infor- mation processing resources and on the other hand puts funda mental constraints on the processing of quantum information implying “no-go” theorems for cloni ng [1–3], bit commitment [4, 5] and deleting [6] in quantum theory. Here we ask about possibilit y of “zero knowledge” scenario which, for its simplicity, can be considered as...

    Full text available to download

  • Sharp transitions in low-number quantum dots Bayesian magnetometry

    Publication

    - Scientific Reports - Year 2016

    We consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement...

    Full text available to download

  • Quantum security and theory of decoherence

    Publication

    We sketch a relation between two crucial, yet independent, fields in quantum information research, viz. quantum decoherence and quantum cryptography. We investigate here how the standard cryptographic assumption of shielded laboratory, stating that data generated by a secure quantum device remain private unless explicitly published, is disturbed by the einselection mechanism of quantum Darwinism explaining the measurement process...

    Full text available to download

  • On symmetric extendibility of quantum states and its applications

    Publication

    - Year 2017

    This dissertation is focused on analysis of the symmetric extendibility of quantum states and its applications in the quantum information theory, with special attention paid to the area of quantum entanglement distillation, quantum channels theory, quantum security, and monogamy of quantum entanglement in time. We analyze geometry of the set of symmetric extendible states, i.e. such states that possess symmetric extensions and...

    Full text available to download

  • Semi-definite programming and quantum information

    This paper presents a comprehensive exploration of semi-definite programming (SDP) techniques within the context of quantum information. It examines the mathematical foundations of convex optimization, duality, and SDP formulations, providing a solid theoretical framework for addressing optimization challenges in quantum systems. By leveraging these tools, researchers and practitioners can characterize classical and quantum correlations,...

    Full text available to download

  • Quantum entanglement in time

    Publication

    In this paper we present a concept of quantum entanglement in time in a context of entangled consistent histories. These considerations are supported by presentation of necessary tools closely related to those acting on a space of spatial multipartite quantum states. We show that in similarity to monogamy of quantum entanglement in space, quantum entanglement in time is also endowed with this property for a particular history....

    Full text available to download

  • Blurred quantum Darwinism across quantum reference frames

    Publication

    Quantum Darwinism describes objectivity of quantum systems via their correlations with their environment--information that hypothetical observers can recover by measuring the environments. However, observations are done with respect to a frame of reference. Here, we take the formalism of [Giacomini, Castro-Ruiz, & Brukner. Nat Commun 10, 494 (2019)], and consider the repercussions on objectivity when changing quantum reference...

    Full text available to download

  • Quantum origins of objectivity

    Publication

    - PHYSICAL REVIEW A - Year 2015

    In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete...

    Full text available to download

  • Experimental certification of more than one bit of quantum randomness in the two inputs and two outputs scenario

    Publication

    - NEW JOURNAL OF PHYSICS - Year 2023

    One of the striking properties of quantum mechanics is the occurrence of the Bell-type non-locality. They are a fundamental feature of the theory that allows two parties that share an entangled quantum system to observe correlations stronger than possible in classical physics. In addition to their theoretical significance, non-local correlations have practical applications, such as device-independent randomness generation, providing...

    Full text available to download

  • Hybrid no-signaling-quantum correlations

    Publication

    - NEW JOURNAL OF PHYSICS - Year 2022

    Fundamental investigations in non-locality have shown that while the no-signaling principle alone is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term HNSQ in the...

    Full text available to download

  • Purely quantum superadditivity of classical capacities of quantum multiple access channels

    Publication

    We are studying classical capacities of quantum memoryless multiaccess channels in geometric terms and we are revealing a break of additivity of the Holevo-like capacity. This effect is a purely quantum mechanical one, since, as we point out, the capacity regions of all classical memoryless multiaccess channels are additive. It is the first such effect revealed in the field of classical information transmission via quantum channels.

    Full text available to download

  • Superadditivity of two quantum information resources

    Publication

    - Science Advances - Year 2017

    Entanglement is one of the most puzzling features of quantum theory and a principal resource for quantum information processing. It is well known that in classical information theory, the addition of two classical information resources will not lead to any extra advantages. On the contrary, in quantum information, a spectacular phenomenon of the superadditivity of two quantum information resources emerges. It shows that quantum...

    Full text available to download

  • Własności kwantowe przemian energetycznych zachodzących w silnikach o zapłonie samoczynnym = Quantum properties of energy transformation in diesel engines

    Publication

    - Year 2016

    W pracy uzasadniono, że w badaniach własności energetycznych silników spalinowych o zapłonie samoczynnym należy uwzględnić istniejącą w ich eksploatacji przypadkowość i nieprzewidywalność zdarzeń. Nawiązano do osiągnięć mechaniki kwantowej wskazując na wynikający z nich postulat, że wielkości nazywane komplementarnymi, mają istotną własność, która polega na tym, że niemożliwy jest jednoczesny i zarazem dokładny pomiar ich wartości....

    Full text to download in external service

  • Dynamical objectivity in quantum Brownian motion

    Publication

    Classical objectivity as a property of quantum states —a view proposed to explain the observer-independent character of our world from quantum theory, is an important step in bridging the quantum-classical gap. It was recently derived in terms of spectrum broadcast structures for small objects embedded in noisy photon-like environments. However, two fundamental problems have arisen: a description of objective motion and applicability...

    Full text to download in external service

  • Structure of the Resource Theory of Quantum Coherence

    Publication
    • A. Streltsov
    • S. Rana
    • P. Boes
    • R. Eisert

    - PHYSICAL REVIEW LETTERS - Year 2017

    Quantum coherence is an essential feature of quantum mechanics which is responsible for the departure between the classical and quantum world. The recently established resource theory of quantum coherence studies possible quantum technological applications of quantum coherence, and limitations that arise if one is lacking the ability to establish superpositions. An important open problem in this context is a simple characterization...

    Full text to download in external service

  • Consistency of Quantum Computation and the Equivalence Principle.

    Publication

    The equivalence principle, being one of the building blocks of general relativity, seems to be crucial for analysis of quantum effects in gravity. In this paper we consider the relation between the equivalence principle and the consistency of quantum information processing in gravitational field. We propose an analysis with a looped evolution consisting of steps both in the gravitational field and in the accelerated reference frame....

    Full text available to download

  • Direct estimation of linear and nonlinear functionals of quantum state

    Publication
    • A. Ekert
    • C. M. Alves
    • D. K. Oi
    • M. Horodecki
    • P. Horodecki
    • L. C. Kwek

    - PHYSICAL REVIEW LETTERS - Year 2002

    We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of...

  • Direct detection of quantum entanglement

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2002

    Basing on positive maps separability criterion we propose the experimentally viable, direct detection of quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two qubits it provides a sharp (i.e., “if and only if”) separability test and estimation of amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.

  • Anomalous decay of quantum correlations of quantum-dot qubits

    Publication

    - PHYSICAL REVIEW A - Year 2013

    We study the evolution of quantum correlations, quantified by the geometric discord, of two excitonic quantum-dot qubits under the influence of the phonon environment. We show that the decay of these correlations differs substantially from the decay of entanglement. Instead of displaying sudden-death-type behavior, the geometric discord shows a tendency to undergo transitions between different types of decay, is sensitive to nonlocal...

    Full text available to download

  • No Quantum Realization of Extremal No-Signaling Boxes

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2016

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand,...

    Full text to download in external service

  • Quantum metrology: Heisenberg limit with bound entanglement

    Publication

    - PHYSICAL REVIEW A - Year 2015

    Quantum entanglement may provide a huge boost in the precision of parameter estimation. However, quantum metrology seems to be extremely sensitive to noise in the probe state. There is an important still open question: What type of entanglement is useful as a resource in quantum metrology? Here we raise this question in relation to entanglement distillation. We provide a counterintuitive example of a family of bound entangled states...

    Full text available to download

  • Generic emergence of classical features in quantum Darwinism

    Publication

    - Nature Communications - Year 2015

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics:...

    Full text to download in external service

  • The decay of quantum correlations between quantum dot spin qubits and the characteristics of its magnetic-field dependence

    Publication

    - EPL-EUROPHYS LETT - Year 2014

    We address the question of the role of quantum correlations beyond entanglement in the context of quantum magnetometry. We study the evolution of the rescaled variant of the geometric quantum discord of two electron-spin qubits interacting with an environment of nuclear spins via the hyperfine interaction. We have found that quantum correlations display a strong magnetic-field sensitivity which can be utilized for decoherence-driven...

    Full text to download in external service

  • Experimental Extraction of Secure Correlations from a Noisy Private State

    Publication
    • K. Dobek
    • M. Karpiński
    • R. Demkowicz-Dobrzański
    • K. Banaszek
    • P. Horodecki

    - PHYSICAL REVIEW LETTERS - Year 2011

    We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies...

    Full text available to download

  • Aspects of multistation quantum information broadcasting

    Publication

    We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity. (C) 2010 Elsevier B.V. All rights reserved.

    Full text to download in external service

  • Long-distance quantum communication over noisy networks without long-time quantum memory

    Publication
    • P. Mazurek
    • A. Grudka
    • M. Horodecki
    • P. Horodecki
    • J. Łodyga
    • Ł. Pankowski
    • A. Przysiężna

    - PHYSICAL REVIEW A - Year 2014

    The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission...

    Full text available to download

  • Generic appearance of objective results in quantum measurements

    Publication

    - PHYSICAL REVIEW A - Year 2017

    Measurement is of central interest in quantum mechanics as it provides the link between the quantum world and the world of everyday experience. One of the features of everyday experience is its robust, objective character, contrasting the delicate nature of quantum systems. Here we analyze in a completely model-independent way the celebrated von Neumann measurement process, using recent techniques of information flow, studied in...

    Full text available to download

  • Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    Publication

    - PHYSICAL REVIEW A - Year 2010

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative...

    Full text available to download

  • The Ellenbogen's "Matter as Software" Concept for Quantum Computer Implementation: III. Selection of X@C60 Molecular Building Blocks (MBBs) for Tip-Based Nanofabrication (TBN) of Trapped Neutral Atom Quantum Computing Devices

    Publication

    - Quantum Matter - Year 2016

    The selection of guest atoms X of X@C60 MBBs for TBN of trapped neutral atom quantum computing devices is reported. Assuming the all-optical quantum computing as a final target stage, the two criteria are most important: the charge q accumulated on the C60 host must be as low as possible, and the atom X must have one or more available excited states within the band falling into the low energy window of neutral C60 molecule electronic...

    Full text to download in external service

  • Quantum communication complexity advantage implies violation of a Bell inequality

    Publication

    - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA - Year 2016

    We obtain a general connection between a quantum advantage in communication complexity and non-locality. We show that given any protocol offering a (sufficiently large) quantum advantage in communication complexity, there exists a way of obtaining measurement statistics which violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily...

    Full text to download in external service

  • Unconditional privacy over channels which cannot convey quantum information

    Publication
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • D. Leung
    • J. Oppenheim

    - PHYSICAL REVIEW LETTERS - Year 2008

    Quantum cryptography enables one to verify that the state of the quantum system has not been tampered with and thus one can obtain privacy regardless of the power of the eavesdropper. All previous protocols relied on the ability to faithfully send quantum states or equivalently to share pure entanglement. Here we show this need not be the case-one can obtain verifiable privacy even through some channels which cannot be used to...

    Full text to download in external service