Search results for: SOLVATION WATER
-
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics
PublicationThe lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin...
-
Collagen type II–hyaluronan interactions – the effect of proline hydroxylation: a molecular dynamics study
PublicationHyaluronan–collagen composites have been employed in numerous biomedical applications. Understanding the interactions between hyaluronan and collagen is particularly important in the context of joint cartilage function and the treatment of joint diseases. Many factors affect the affinity of collagen for hyaluronan. One of the important factors is the ratio of 3- or 4-hydroxy proline to proline residues. This article presents...
-
Molecular basis of the osmolyte effect on protein stability: a lesson from the mechanical unfolding of lysozyme
PublicationOsmolytes are a class of small organic molecules that shift the protein folding equilibrium. For this reason, they are accumulated by organisms under environmental stress, and find applications in biotechnology where proteins need to be stabilized or dissolved. However, despite years of research, debate continues over the exact mechanisms underpinning the stabilizing and denaturing effect of osmolytes. Here, we simulated the mechanical...
-
Understanding ion–ion and ion–solvent interactions in aqueous solutions of morpholinium ionic liquids with N-acetyl-L-alaninate anion through partial molar properties and molecular dynamics simulations
PublicationAmino acid ionic liquids (AAILs) provide a low toxicity, biodegradable alternative to conventional ionic liquids, while also maintaining solubility in water. Densities and sound velocities of aqueous solutions of four amino acid ionic liquids (AAILs), based on the N-alkyl-N-methylmorpholinium ([Mor1,R], R = 2, 3, 6, 8) cation and N-acetyl-L-alaninate ([N-Ac-L-Ala]) anion were measured at T = (293.15–313.15) K and at atmospheric...
-
Thermodynamic interpretation and prediction of CO2 solubility in imidazolium ionic liquids based on regular solution theory
PublicationRegular solution theory (RST) is the most popular model for the interpretation of the interaction between CO2 and ionic liquids. In the present work, the parameters of this model were determined for the CO2 absorption in eleven imidazolium ionic liquids. The y-intercept (A) of the RST model for the investigated imidazolium liquids increases with increasing temperature whereas the slope (B) remains constant. The values of RST parameters...
-
Modeling the Influence of Salts on the Critical Micelle Concentration of Ionic Surfactants
PublicationWe show for the first time that a phenomenological, augmented volume-based thermodynamics (aVBT) model is capable to predict the critical micelle concentrations of ionic surfactants, including ionic liquids, with added salts. The model also adjusts for the type of salt added by including its molecular volume, which might form a connection to the Hofmeister effect. The other physico-chemically relevant quantities included in the...
-
Hydration of urea and its derivatives - Volumetric and compressibility studies
PublicationThe densities and sound velocities at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K have been measured for aqueous solutions of urea, N,N-dimethylurea, N,N-diethylurea, N-propylurea, N-butylurea. From these data the apparent molar volumes, V the apparent molar isentropic compressions, KS,, and the Passynski solvation numbers of solutes have been determined. The concentration dependencies of the calculated quantities, their...
-
Studies on the solid-liquid equilibria and intermolecular interactions Urea binary mixtures with Sulfanilamide and Sulfacetamide
PublicationThe binary phase diagrams of Sulfanilamide-Urea (SN-U) and Sulfacetamide-Urea (SC-U) were measured using differential scanning calorimetry technique (DSC). Both examined mixtures were found to form simple binary eutectics. The limited miscibility in the solid state observed by DSC, proving inability of co-crystallization in new multi-molecular form, was also confirmed using PXRD and FTIR-ATR measurements of solid dispersions...
-
Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations
PublicationObjective: The aim of this study was to explore the possibility of using natural deep eutectic solvents (NADES) as solvation media for enhancement of solubility of sulfonamides, as well as gaining some thermodynamic characteristics of the analyzed systems. Significance: Low solubility of many active pharmaceutical ingredients is a well-recognized difficulty in pharmaceutical industry, hence the need for different strategies addressing...
-
The hydration of the protein stabilizing agents: trimethylamine-N-oxide, glycine and its N-methylderivatives - the volumetric and compressibility studies
PublicationThe densities at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K and sound velocities at T = 298.15 K have been measured for aqueous solutions of trimethylamine-N-oxide, glycine, N-methylglycine (sarcosine), N,N-dimethylglycine, N,N,N-trimethylglycine (betaine). From these data the apparent molar volumes, VΦ, the apparent molar isentropic compressions, KS,Φ, and the solvation numbers of solutes have been determined. The concentration...
-
Minimal parameter implicit solvent model for ab initioelectronic-structure calculations
PublicationAbstract - We present an implicit solvent model for ab initio electronic-structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comput. Chem., 23 (2002) 662). While this model depends on only two parameters, we demonstrate...
-
Theoretical investigation of the structural insights of the interactions of γ-Fe2O3 nanoparticle with (EMIM TFSI) ionic liquid
PublicationOne of the possible applications of ionic liquids is to produce electricity from heat. The iron oxide nanoparticle is a potent electrical particle, which is expected to improve the heat’s efficiency to electricity conversion, however, it is prone to aggregation and sedimentation, which hamper its application. One of the methods to enhance the nanoparticle’s solubility and electrical properties is the use of a stabilizing component...
-
Photoinduced electron transfer in 5-bromouracil labeled DNA. A contrathermodynamic mechanism revisited by electron transfer theories
PublicationThe understanding of the 5-bromouracil (BrU) based photosensitization mechanism of DNA damage is of large interest due to the potential applications in photodynamic therapy. Photoinduced electron transfer (ET) in BrU labeled duplexes comprising the 50 -GBrU or 50 -ABrU sequence showed that a much lower reactivity was found for the 50 -GBrU pattern. Since the ionization potential of G is lower than that of A, this sequence selectivity...
-
Micelle formation of Tween 20 nonionic surfactant in imidazolium ionic liquids
PublicationAggregation behavior of polyoxyethylene (POE)-type nonionic surfactant Tween 20 in imidazolium ionic liquids with varying chain length and different anions, such as tetrafluoroborate, hexafluorophosphate, bis(trifluoromethanesulfonyl)imide, and trifluoromethanesulfonate, was investigated by means of surface tension, conductivity and dynamic light scattering measurements. The role of the chain length, anion size as well as interactions...
-
Spectroscopic and photophysical properties of ZNTPP in a room temperature ionic liquid
PublicationThe steady-state absorption and emission spectra and the time-resolved Soret- and Q-band excited fluorescence profiles of the model metalloporphyrin, ZnTPP, have been measured in a highly purified sample of the common room temperature ionic liquid, [bmim][PF(6)]. S(2)-S(0) emission resulting from Soret-band excitation behaves in a manner completely consistent with that of molecular solvents of the same polarizability. The ionic...
-
Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects
PublicationThe radiative emission lifetime and associated S1 excited state properties of a BODIPY dye are investigated with TDDFT and EOM-CCSD calculations. The effects of a solvent are described with the polarizable continuum model using the linear response (LR) approach as well as state-specific methods. The Franck–Condon (FC), Herzberg–Teller (HT) and Duschinsky vibronic effects are evaluated for the absorption and emission spectra, and...
-
Effect of osmolytes of different type on DNA behavior in aqueous solution. Experimental and theoretical studies
PublicationOsmolytes, the small organic molecules accumulated in cells under environmental stress, can modulate the stability of biopolymers such as proteins and DNA. In spite of many years of research, there is no established molecular mechanism of the influence of osmolytes on DNA structure. Here, we used two model osmolytes that denature (urea) or stabilize (trimethylglycine, TMG) proteins to study their effect on DNA in aqueous solutions...
-
Self-assembly, stability and conductance of amphotericin B channels: bridging the gap between structure and function
PublicationAmphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner. Unfortunately, the structure of the biologically active AmB channels has long eluded researchers, obstructing the design of safer alternatives. Here, we investigate the structural and thermodynamic aspects of channel formation, stability,...
-
Manifestation of Intermolecular Interactions in the IR Spectra of 2- and 4-Methylmethcathinones Hydrochlorides: DFT Study and Hirshfeld Surfaces Analysis
PublicationThis paper reports a Hirshfeld surfaces analysis of crystalline 2- and 4-methylmethcathinone (2-MMC and 4-MMC) hydrochlorides to analyze NH∙Cl and CH∙∙∙Cl intermolecular interactions and approve the formation of the NН2+–Cl– salt fragment in both 2-MMC∙HCl and 4-MMC∙HCl crystals. Two isomeric dimers were separated from the corresponding crystal packing to model IR spectra of the crystalline 2-MMC∙HCl...
-
Multicomponent ionic liquid CMC prediction
PublicationWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role
PublicationIonic liquids (ILs) are a broad group of organic salts of varying structure and properties, used in energy conversion and storage, chemical analysis, separation processes, as well as in the preparation of particles in nano- and microscale. In material engineering, ionic liquids are applied to synthesize mainly metal nanoparticles and 3D semiconductor microparticles. They could generally serve as a structuring agent or as a reaction...
-
Thermodynamics and Intermolecular Interactions of Nicotinamide in Neat and Binary Solutions: Experimental Measurements and COSMO-RS Concentration Dependent Reactions Investigations
PublicationIn this study, the temperature-dependent solubility of nicotinamide (niacin) was measured in six neat solvents and five aqueous-organic binary mixtures (methanol, 1,4-dioxane, acetonitrile, DMSO and DMF). It was discovered that the selected set of organic solvents offer all sorts of solvent effects, including co-solvent, synergistic, and anti-solvent features, enabling flexible tuning of niacin solubility. In addition, differential...
-
The ONETEP linear-scaling density functional theory program
PublicationWe present an overview of the ONETEP program for linear-scaling density functional theory (DFT) calculations with large basis set (planewave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the...
-
Experimental and theoretical studies on the Sulfamethazine-Urea and Sulfamethizole-Urea solid-liquid equilibria
PublicationThe miscibility of active pharmaceutical ingredients with excipients is an important aspect in pharmaceutical technology protocols. In this study, the differential scanning calorimetry (DSC) was used for Sulfamethazine-Urea (SI–U) and Sulfamethizole-Urea (SO–U) solid-liquid phase diagrams determination. Both sulfonamides form simple binary eutectics with Urea. The lack of new co-crystal phase formation was confirmed by inspection...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublicationWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice
PublicationUsing molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation...