Filters
total: 261
Search results for: SURROGATE-MODELS
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublicationAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
A Novel Versatile Decoupling Structure and Expedited Inverse-Model-Based Re-Design Procedure for Compact Single-and Dual-Band MIMO Antennas
PublicationMultiple-input multiple-output (MIMO) antennas are considered to be the key components of fifth generation (5G) mobile communications. One of the challenges pertinent to the design of highly integrated MIMO structures is to minimize the mutual coupling among the antenna elements. The latter arises from two sources, the coupling in the free space and the coupling currents propagating on a ground plane. In this paper, an array of...
-
Design of High-Performance Scattering Metasurfaces through Optimization-Based Explicit RCS Reduction
PublicationThe recent advances in the development of coding metasurfaces created new opportunities in realization of radar cross section (RCS) reduction. Metasurfaces, composed of optimized geometries of meta-atoms arranged as periodic lattices, are devised to obtain desired electromagnetic (EM) scattering characteristics. Despite potential benefits, their rigorous design methodologies are still lacking, especially in the context of controlling...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...