Search results for: DIISOCYANATE MIXTURES
-
Segmented bio-based polyurethane composites containing powdered cellulose obtained from novel bio-based diisocyanate mixtures
PublicationA considerable number of research works focus on the positive influence of cellulose on the properties of polymer-based composites and their wide range of application possibilities. The present work is focused on the synthesis of novel bio-based polyurethane (bio-PU) composites filled with powdered cellulose (microcellulose, MC) in an amount of 5 wt.%. Bio-PU composites were synthesized via a non-solvent prepolymer method. First,...
-
Eco-friendly Route for Thermoplastic Polyurethane Elastomers with Bio-based Hard Segments Composed of Bio-glycol and Mixtures of Aromatic–Aliphatic and Aliphatic–Aliphatic Diisocyanate
PublicationApplication of bio-based diisocyanates with low volatility instead petrochemical diisocyanates has positive impact on environment by reduction of hazardous effects on living organisms and lead to bio-based polyurethanes (bio-PUs) with good usage properties. This work was focused on the synthesis and chosen properties examination of partially bio-based thermoplastic polyurethane elastomers (bio-PUs) obtained using diisocyanate mixtures,...
-
The Green Approach to the Synthesis of Bio-Based Thermoplastic Polyurethane Elastomers with Partially Bio-Based Hard Blocks
PublicationBio-based polymeric materials and green routes for their preparation are current issues of many research works. In this work, we used the diisocyanate mixture based on partially bio-based diisocyanate origin and typical petrochemical diisocyanate for the preparation of novel bio-based thermoplastic polyurethane elastomers (bio-TPUs). We studied the influence of the diisocyanate mixture composition on the chemical structure, thermal,...
-
Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments
PublicationAging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs...
-
Structure-Property Relationship and Multiple Processing Studies of Novel Bio-Based Thermoplastic Polyurethane Elastomers
PublicationCurrently, the growing demand for polymeric materials has led to an increased need to develop effective recycling methods. This study focuses on the multiple processing of bio-based thermoplastic polyurethane elastomers (bio-TPUs) as a sustainable approach for polymeric waste management through mechanical recycling. The main objective is to investigate the influence of two reprocessing cycles on selected properties of bio-TPUs....
-
Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling
PublicationIn this work polyurethane elastomers were synthesised by using different mixtures of a petrochemical and glycerolysate polyols and 4,4-diphenylmethane diisocyanate (MDI). Glycerolysate polyol was produced from polyurethane foam decomposition using crude glycerine as a decomposition agent. The structure and thermal properties of obtained semi-product were similar to the polyol used in the synthesis of original foam. Glycerolysate...
-
Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling
PublicationThe polyol is a major component in polyurethane formulations and therefore introducing to the formulation recycled polyol (obtained during decomposition process) allows decreasing the usage of pure petrochemical components. In this work, thermoplastic polyurethanes were prepared using various mixtures of a petrochemical macrodiol poly(ethylene-butylene adipate)diol (PEBA) and a recycled glycolysate intermediate, called glycolysate...