Search results for: DOKUMENTY AKTYWNE: UCZENIE MASZYNOWE - Bridge of Knowledge

Search

Search results for: DOKUMENTY AKTYWNE: UCZENIE MASZYNOWE

Search results for: DOKUMENTY AKTYWNE: UCZENIE MASZYNOWE

  • Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych

    Publication

    - Współczesna Gospodarka - Year 2017

    W pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...

    Full text available to download

  • L22_23 Uczenie maszynowe

    e-Learning Courses
    • S. Zaporowski
    • T. Neumann
    • N. Kowalczyk
    • M. Mazur-Milecka
    • J. Rumiński
    • N. Szarwińska

  • L23_24 Uczenie maszynowe

    e-Learning Courses
    • S. Zaporowski
    • T. Neumann
    • N. Kowalczyk
    • M. Mazur-Milecka
    • J. Rumiński
    • N. Szarwińska

  • Sztuczna inteligencja i uczenie maszynowe

    Events

    27-01-2022 18:00 - 27-01-2022 19:00

    Spotkanie informacyjne dotyczące studiów II stopnia na specjalnościach sztuczna inteligencja i uczenie maszynowe na wydziale ETI

  • Kwantowe uczenie maszynowe (FIZ2B009)

    e-Learning Courses
    • M. Nowakowski

    Celem przedmiotu jest zaznajomienie studentów z podstawowymi zagadnieniami dotyczącymi współczesnych metod kwantowego uczenia maszynowego, w szczególności metod wykorzystujących algorytmy kwantowe do efektywnego przetwarzania i analizy danych. Studenci zdobędą wiedzę na temat teoretycznych podstaw kwantowego przetwarzania informacji, w tym superpozycji, splątania kwantowego oraz pomiarów kwantowych, a także nauczą się, jak te zjawiska...

  • Uczenie maszynowe (lato 2021/2022)

    e-Learning Courses
    • S. Zaporowski
    • T. Neumann
    • N. Kowalczyk
    • J. Rumiński

  • Uczenie maszynowe (lato 2020/2021)

    e-Learning Courses
    • A. Kurowski
    • E. Katsaros
    • S. Zaporowski
    • T. Neumann
    • N. Kowalczyk
    • M. Mazur-Milecka
    • J. Rumiński

  • UCZENIE MASZYNOWE I [2023/24]

    e-Learning Courses
    • J. Buler
    • R. Buler
    • M. Grochowski
    • B. Puchalski

  • Uczenie maszynowe w badaniach Ziemi - 2023

    e-Learning Courses
    • T. E. Berezowski
    • Z. Łubniewski

  • 2022/2023 - Uczenie maszynowe o wysokiej wydajności

    e-Learning Courses
    • T. M. Boiński
    • R. Benke
    • K. Zawora

  • [UczMasz 2024] Uczenie maszynowe w badaniach Ziemi

    e-Learning Courses
    • T. E. Berezowski
    • T. Bieliński
    • Z. Łubniewski

  • 2023/2024 - Uczenie maszynowe o wysokiej wydajności

    e-Learning Courses
    • T. M. Boiński
    • R. Benke
    • K. Zawora

  • UCZENIE MASZYNOWE W PROCESACH DECYZYJNYCH AUTONOMICZNYCH POJAZDÓW ELEKTRYCZNYCH [Niestacjonarne][2022/23]

    e-Learning Courses
    • M. Drzewiecki

  • Karol Dziedziul dr hab.

  • Optymalizacja struktur i obliczeń w sieciach neuronowych - 2023

    e-Learning Courses
    • S. Cygert
    • P. Szczuko

    3 semestr studiów II stopnia, kierunek Informatyka, specjalność Uczenie Maszynowe

  • Optymalizacja struktur i obliczeń w sieciach neuronowych

    e-Learning Courses
    • S. Cygert
    • P. Szczuko

    3 semestr studiów II stopnia, kierunek Informatyka, specjalność Uczenie Maszynowe

  • Optymalizacja struktur i obliczeń w sieciach neuronowych - 2024

    e-Learning Courses
    • S. Cygert
    • P. Szczuko

    3 semestr studiów II stopnia, kierunek Informatyka, specjalność Uczenie Maszynowe

  • Ocena wpływu drgań komunikacyjnych na budynki za pomocą maszynowego uczenia

    Drgania komunikacyjne mogą powodować spękania tynków, zarysowania a nawet zawalenie się budynku. Pomiary na rzeczywistych obiektach są pracochłonne i kosztowne, a nie zawsze uzasadnione. Celem jest utworzenie modelu, dzięki któremu można przewidzieć zagrożenie szkodliwego oddziaływania drgań komunikacyjnych na budynek. Po przeprowadzeniu własnych badań pomiarowych oraz analizie literatury utworzono model oparty na Maszynach Wektorów...

    Full text available to download

  • Joanna Mytnik dr hab.

    Dyrektor Centrum Nowoczesnej Edukacji Politechniki Gdańskiej, pasjonatka projektowania procesów uczenia się za pomocą niestandardowych metod i narzędzi (UX i design thinking).  Posiada ponad 20 lat doświadczenia w pracy dydaktycznej ze studentami i nauczycielami. Jej pasją jest uczenie, które rozumie jako organizację przestrzeni edukacyjnej realizującej potrzeby każdego ze studentów. Projektując środowisko uczenia się bazuje na...

  • Metody sztucznej inteligencji - 2023

    e-Learning Courses
    • P. Szczuko

    Wprowadzenie do metod stosowanych w uczeniu maszynowym i sztucznej inteligencji. Sposoby parametryzacji danych, budowania modelu, podejmowania decyzji. Specjalność: uczenie maszynowe.

  • Metody sztucznej inteligencji

    e-Learning Courses
    • P. Szczuko

    Wprowadzenie do metod stosowanych w uczeniu maszynowym i sztucznej inteligencji. Sposoby parametryzacji danych, budowania modelu, podejmowania decyzji. Specjalność: uczenie maszynowe.

  • Etyka w uczeniu maszynowym - 2024

    e-Learning Courses
    • P. Szczuko

    Wprowadzenie do metod stosowanych w uczeniu maszynowym i sztucznej inteligencji. Sposoby parametryzacji danych, budowania modelu, podejmowania decyzji. Specjalność: uczenie maszynowe.

  • Metody sztucznej inteligencji - 2024

    e-Learning Courses
    • P. Szczuko

    Wprowadzenie do metod stosowanych w uczeniu maszynowym i sztucznej inteligencji. Sposoby parametryzacji danych, budowania modelu, podejmowania decyzji. Specjalność: uczenie maszynowe.

  • Odkrywanie wiedzy i systemy rekomendacyjne 2022/23

    e-Learning Courses
    • A. Nabożny
    • P. Szczuko
    • A. Karpus
    • A. Przybyłek

    Przedmiot dla specjalności Uczenie Maszynowe na drugim stopniu studiów stacjonarnych na kierunku Informatyka. Przedmiot finansowany z projektu AI Tech (https://eti.pg.edu.pl/ai-tech).

  • Odkrywanie Wiedzy i Systemy Rekomendacyjne 2024/25

    e-Learning Courses
    • A. Karpus
    • A. Przybyłek
    • W. Waloszek

    Przedmiot dla specjalności Uczenie Maszynowe na drugim stopniu studiów stacjonarnych na kierunku Informatyka. Przedmiot został sfinansowany z projektu AI Tech (https://eti.pg.edu.pl/ai-tech).

  • Odkrywanie Wiedzy i Systemy Rekomendacyjne 2023/24

    e-Learning Courses
    • A. Karpus
    • A. Przybyłek
    • W. Waloszek

    Przedmiot dla specjalności Uczenie Maszynowe na drugim stopniu studiów stacjonarnych na kierunku Informatyka. Przedmiot został sfinansowany z projektu AI Tech (https://eti.pg.edu.pl/ai-tech).

  • Adam Władziński

    People

    Adam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...

  • Edytor polityk negocjacyjnych mobilnego dokumentu elektronicznego

    Publication

    - Year 2013

    W artykule opisano edytor polityk negozjacyjnych umożliwiający generowanie ich specyfikacji w postaci bardzo rozległych drzew na podstawie elementów składowych ofert oraz reguł polityk i ich wartościowanie. Przedstawiono również zarys problemu negocjacji miedzy dokumentem a agentem, ktory ma ten dokument obsługiwać. Drzewa generowane przez edytor mają posłużyć za zbiory uczące dla sieci neuronowej przyspieszającej proces negocjacji.

  • Meta-learning as a machine learning tool for experimental boosting of sorption properties of ionic liquids

    Projects

    Project manager: Karol Baran   Financial Program Name: PRELUDIUM

    Project realized in Department of Physical Chemistry according to UMO-2023/49/N/ST5/01043 agreement

  • Zaawansowane przygotowanie danych w uczeniu maszynowym

    e-Learning Courses
    • J. Cychnerski

    Kurs wyłączenie dla specjalności "Uczenie Maszynowe" oraz "Sztuczna Inteligencja" kierunku Informatyka na wydziale ETI, realizowanych w projekcie AI Tech. Przedmiotu nie można wybrać jako przedmiot obieralny ani w ramach indywidualnych planów studiów poza powyższymi specjalnościami.

  • Duże zbiory danych w zdalnej diagnostyce medycznej z wykorzystaniem technik głębokiego uczenia,

    Publication

    W ostatnim czasie obserwujemy tendencję globalnego starzenia się i znaczących zmian struktur demograficznych na całym świecie. Zgodnie z raportem przedstawionym przez Moody Investors Service, przewiduje się, iż do 2030 roku liczba znacząco-starzejących się krajów wzrośnie z 3 do 34. Światowy proces starzenia się społeczeństw doprowadził do wzrastających oczekiwań wobec starszych osób do pozostania niezależnymi. W związku z tym...

    Full text to download in external service

  • Cykl wykładów o sztucznej inteligencji

    Events

    27-01-2022 17:30 - 27-01-2022 20:00

    AI Bay i DIH4.AI zapraszają na seminarium z cyklem wykładów dotyczących wykorzystania sztucznej inteligencji w naukach fizycznych, inżynierii materiałowej, nanotechnologii oraz informatyce kwantowej.

  • Tomasz Majchrzak dr inż.

    Dr inż. Tomasz Majchrzak urodził się 29.01.1992 roku w Elblągu. W młodym wieku przejawiał zainteresowania z zakresu nauk społecznych i historii, stąd wykształcenie średnie uzyskał w I LO w Elblągu w klasie o profilu społeczno-prawnym. Jednak, rzucając sobie wyzwanie, zdecydował się wybrać studia na Wydziale Chemicznym Politechniki Gdańskiej, z którym związany jest do teraz. Swoją karierę naukową rozpoczął jeszcze na studiach inżynierskich...

  • Wynalazek a biznes

    Events

    15-06-2022 11:00 - 15-06-2022 12:00

    Jeśli interesujesz się wdrażaniem innowacji na rynek, zapraszamy na dyskusję podczas webinarium organizowanego przez Centra Transferu Technologii Uczelni Fahrenheita (FarU).