Filters
total: 2690
filtered: 38
-
Catalog
Chosen catalog filters
Search results for: RÓWNOWAGA HYDROFILOWO-LIPOFILOWA (HLB)
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-LB, LB+0.2% glucose, LB+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the process of biofilm formation by UPEC IH11128 in the LB medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of IH11128 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 +...
-
Study of the process of biofilm formation by UPEC DR14 in the LB medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of DR14 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 + 0,5%...
-
Determination of cytotoxic activity of new bisacridines IKE18, IKE19, IKE21 and IE10 against human kidney HEK-293 (ATCC® CRL-1573™) and liver cells HEPG2 (ATCC® HB-8065™)
Open Research DataThe datasets contain the results of determining in vitro cytotoxic activity of compounds using human cell lines assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a method that evaluates cell viability by measuring cellular oxidoreductase activity. Initially, cells were seeded in 96-well culture plates and allowed...
-
Measurements of power supply system properties of "Magnetic SpeedLine" ultra-fast robot prototype for IML labeling
Open Research DataTests of the power supply system of "SpeedLine magnetic" ultra-fast industrial robot for IML labeling were carried out to analyze the effect of the active power filter (APF) parameters on the power quality. at the target duty cycle. Tests were performed with the target duty cycle. Linear synchronous motors with permanent magnets were used to drive...
-
Compliance with the restrictions during the COVID-19 pandemic in Poland and Sweden
Open Research DataOur study is aimed to check if the difference between Sweden and Poland in trust is related to negative affective reactions to authorities and law antipathy being manifestations of lack of trust and related to value-based legitimacy, behavioral legitimacy and prosocial justification of compliance with the restrictions put on citizens to limit the spread...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 Dra D-mut-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pACYCpBAD-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on the motility and aggregation of the recombinant Escherichia coli strain AAEC191A/pACYCpBAD-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90 D54-STOP-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain AAEC191A/pCC90-PBS, PBS+0.2% glucose, PBS+0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 Dra D-mut-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
Study of the influence of medium composition on motility and aggregation of recombinant Escherichia coli strain BL21(DE3)/pCC90 D54-STOP-M9 + 0.5% cassaminic acids, M9 + 0.5% cassaminic acids + 0.2% glucose, M9 + 0.5% cassaminic acids + 0.5% glucose
Open Research DataMicrobial motility is a fundamental aspect of many microbial life cycles and is a key survival mechanism that enables microorganisms to navigate diverse and dynamic environmental conditions. This phenomenon becomes particularly important in response to changes in stimuli in time and space. The following experiment aimed to investigate how the composition...
-
XPS data of deuterium and hydrogen grown boron-doped diamond
Open Research DataThe high-resolution C1s X-ray absorption spectra of BDD@H and BDD@D samples were measured using the facilities of the HE-SGM beamline (HE-SGM) at the BESSY II synchrotron radiation source of Helmholtz–Zentrum Berlin (HZB).[90] The measurements were carried out under ultra-high vacuum conditions: P ≈ 2×10−9 Torr at T = 300 K. The NEXAFS spectra were...
-
Study of the process of biofilm formation by UPEC IH11128 in the M9+0,5% casamino acids medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of IH11128 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 +...
-
Study of the process of biofilm formation by UPEC DR14 in the M9+0,5% casamino acids+0,2% glycerol medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of DR14 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 + 0,5%...
-
Study of the process of biofilm formation by UPEC IH11128 in the M9+0,5% casamino acids+0,2% glucose medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of IH11128 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 +...
-
Study of the process of biofilm formation by UPEC IH11128 in the M9+0,2% glucose medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of IH11128 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 +...
-
Study of the process of biofilm formation by UPEC DR14 in the M9+0,2% glucose medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of DR14 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 + 0,5%...
-
Study of the process of biofilm formation by UPEC DR14 in the M9+0,5% casamino acids+0,2% glucose medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of DR14 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 + 0,5%...
-
Study of the process of biofilm formation by UPEC IH11128 in the M9+0,5% casamino acids+0,2% glycerol medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of IH11128 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 +...
-
Study of the process of biofilm formation by UPEC DR14 in the M9+0,5% casamino acids medium
Open Research DataBiofilm formation is a direct reaction of bacteria to environmental factors. In order to determine the influence of the medium composition on the ability of DR14 on biofilm production, we cultured bacteria under the following conditions: LB medium, M9 medium + 0,2% glucose, M9 + 0,5% casamino acids, M9 + 0,5% casamino acids + 0,2% glycerol, M9 + 0,5%...