TAIWANESE JOURNAL OF MATHEMATICS - Czasopismo - MOST Wiedzy

Wyszukiwarka

TAIWANESE JOURNAL OF MATHEMATICS

ISSN:

1027-5487

eISSN:

2224-6851

Dyscypliny:

  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)

Punkty Ministerialne: Pomoc

Punkty Ministerialne - aktualny rok
Rok Punkty Lista
Rok 2025 70 Ministerialna lista czasopism punktowanych 2024
Punkty Ministerialne - lata ubiegłe
Rok Punkty Lista
2025 70 Ministerialna lista czasopism punktowanych 2024
2024 70 Ministerialna lista czasopism punktowanych 2024
2023 70 Lista ministerialna czasopism punktowanych 2023
2022 70 Lista ministerialna czasopism punktowanych (2019-2022)
2021 70 Lista ministerialna czasopism punktowanych (2019-2022)
2020 70 Lista ministerialna czasopism punktowanych (2019-2022)
2019 70 Lista ministerialna czasopism punktowanych (2019-2022)
2018 25 A
2017 25 A
2016 25 A
2015 25 A
2014 25 A
2013 25 A
2012 25 A
2011 25 A
2010 27 A

Model czasopisma:

Open Access

Punkty CiteScore:

Punkty CiteScore - aktualny rok
Rok Punkty
Rok 2023 1.1
Punkty CiteScore - lata ubiegłe
Rok Punkty
2023 1.1
2022 1.4
2021 1.5
2020 1.3
2019 1.2
2018 1.3
2017 1.5
2016 1.4
2015 1.2
2014 1.3
2013 1.3
2012 1.1
2011 1

Impact Factor:

Zaloguj się aby zobaczyć Współczynnik Impact Factor dla tego czasopisma

Filtry

wszystkich: 1

  • Kategoria
  • Rok
  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Katalog Czasopism

Rok 2021
  • Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations

    Abstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...

    Pełny tekst do pobrania w portalu

wyświetlono 675 razy