dr inż. Magdalena Chmara
Zatrudnienie
- Adiunkt w Instytut Matematyki Stosowanej
Obszary badawcze
Kontakt dla biznesu
- Lokalizacja
- Al. Zwycięstwa 27, 80-219 Gdańsk
- Telefon
- +48 58 348 62 62
- biznes@pg.edu.pl
Media społecznościowe
Kontakt
- magdalena.chmara@pg.edu.pl
Adiunkt
- Miejsce pracy
-
Gmach B
pokój 511 otwiera się w nowej karcie - Telefon
- +48 58 347 17 12
- magchmar@pg.edu.pl
Wybrane publikacje
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
In this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
Using the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
Abstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
Uzyskane stopnie/tytuły naukowe
-
2021-11-05
Nadanie stopnia naukowego
dr matematyka (Dziedzina nauk ścisłych i przyrodniczych)
wyświetlono 2964 razy