Earthquake-Induced Pounding of Medium-to-High-Rise Base-Isolated Buildings - Publikacja - MOST Wiedzy

Wyszukiwarka

Earthquake-Induced Pounding of Medium-to-High-Rise Base-Isolated Buildings

Abstrakt

During earthquakes, out-of-phase vibrations in adjacent buildings with limited distance may cause pounding between them. In recent years, the use of seismic isolation has expanded considerably as an effective approach to reduce seismic damage. However, the isolated building experiences large displacements during earthquakes, and there is a possibility of collisions with adjacent structures. The research on earthquake-induced pounding of base-isolated buildings has been mainly focused on interactions between low structures. In this paper, the influence of structural pounding on the response of medium-to-high-rise base-isolated buildings is investigated under different ground motions. The analysis has been focused on collisions between two insufficiently separated five-story and eight-story base-isolated and fixed base buildings aligned in three different configurations. The results of the study indicate that structural pounding may significantly increase the response of medium-to-high-rise base-isolated buildings during earthquakes. Moreover, substantial dependence of the structural behavior on the gap size between structures has been observed. The general trend shows the reduction in the pounding-involved response with the increase in the gap size value. The results indicate that the increase in the response of the base-isolated building is larger when the height of the structure is bigger. They also show that larger amplifications of peak accelerations of the upper stories can be expected due to collisions. On the other hand, the amplifications of the story shears have not shown any specific trend for different stories of the analyzed base-isolated building.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 50 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Applied Sciences-Basel nr 9, strony 1 - 16,
ISSN: 2076-3417
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Naderpour H., Danaeifard P., Burkacki D., Jankowski R.: Earthquake-Induced Pounding of Medium-to-High-Rise Base-Isolated Buildings// Applied Sciences-Basel -Vol. 9,iss. 21 (2019), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/app9214681
Bibliografia: test
  1. Anagnostopoulos, S.A. Pounding of buildings in series during earthquakes. Earthq. Eng. Struct. Dyn. 1988, 16, 443-456. [CrossRef] otwiera się w nowej karcie
  2. Favvata, M.J.; Karayannis, C.G.; Liolios, A.A. Influence of exterior joint effect on the inter-story pounding interaction of structures. J. Struct. Eng. Mech. 2009, 33, 113-136. [CrossRef] otwiera się w nowej karcie
  3. Naderpour, H.; Khatami, S.M. A new model for calculating the impact force and the energy dissipation based on CR-factor and impact velocity. Sci. Iran. 2015, 22, 59-68. otwiera się w nowej karcie
  4. Sołtysik, B.; Jankowski, R. Non-linear strain rate analysis of earthquake-induced pounding between steel buildings. Int. J. Earth Sci. Eng. 2013, 6, 429-433. otwiera się w nowej karcie
  5. Elwardany, H.; Seleemah, A.; Jankowski, R. Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels. Eng. Struct. 2017, 144, 139-150. [CrossRef] otwiera się w nowej karcie
  6. Khatami, S.M.; Naderpour, H.; Barros, R.C.; Jakubczyk-Gałczyńska, A.; Jankowski, R. Effective formula for impact damping ratio for simulation of earthquake-induced structural pounding. Geosciences 2019, 9, 347. [CrossRef] otwiera się w nowej karcie
  7. Rosenblueth, E.; Meli, R. The 1985 earthquake: Causes and effects in Mexico City. Concr. Int. 1986, 8, 23-34.
  8. Kasai, K.; Maison, B.F. Building pounding damage during the 1989 Loma Prieta earthquake. Eng. Struct. 1997, 19, 195-207. [CrossRef] otwiera się w nowej karcie
  9. Eurocode 8: Design Provisions for Earthquake Resistance of Structures; European Committee for Standardization: Brussels, Belgium, 1998. otwiera się w nowej karcie
  10. Jankowski, R.; Mahmoud, S. Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes. Bull. Earthq. Eng. 2016, 14, 3075-3097. [CrossRef] otwiera się w nowej karcie
  11. Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures: From Theory to Practice; otwiera się w nowej karcie
  12. Falborski, T.; Jankowski, R. Experimental study on effectiveness of a prototype seismic isolation system made of polymeric bearings. Appl. Sci. 2017, 7, 808. [CrossRef] otwiera się w nowej karcie
  13. Falborski, T.; Jankowski, R.; Kwiecień, A. Experimental study on polymer mass used to repair damaged structures. Key Eng. Mater. 2012, 488, 347-350. [CrossRef] otwiera się w nowej karcie
  14. Naderpour, H.; Naji, N.; Burkacki, D.; Jankowski, R. Seismic response of high-rise buildings equipped with base isolation and non-traditional tuned mass dampers. Appl. Sci. 2019, 9, 1201. [CrossRef] otwiera się w nowej karcie
  15. Kelly, J.M. Earthquake-Resistant Design with Rubber; Springer: London, UK, 1993. otwiera się w nowej karcie
  16. Skinner, R.I.; Kelly, J.M.; Heine, A.J. Hysteretic dampers for earthquake-resistant structures. Earthq. Eng. Struct. Dyn. 1975, 3, 287-296. [CrossRef] otwiera się w nowej karcie
  17. Kumar, M.; Whittaker, A.S.; Constantinou, M.C. An advanced numerical model of elastomeric seismic isolation bearings. Earthq. Eng. Struct. Dyn. 2014, 43, 1955-1974. [CrossRef] otwiera się w nowej karcie
  18. Kumar, M.; Whittaker, A.S.; Constantinou, M.C. Characterizing friction in sliding isolation bearings. Earthq. Eng. Struct. Dyn. 2015, 44, 1409-1425. [CrossRef] otwiera się w nowej karcie
  19. Nagarajaiah, S.; Sun, X. Seismic performance of base-isolated buildings in the 1994 Northridge earthquake. In Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 23-28 June 1996. paper no. 598. otwiera się w nowej karcie
  20. Das, S.; Gur, S.; Mishra, S.K.; Chakraborty, S. Optimal performance of base isolated building considering limitation on excessive isolator displacement. Struct. Infrastruct. Eng. 2015, 11, 904-917. [CrossRef] otwiera się w nowej karcie
  21. Fallah, N.; Zamiri, G. Multi-objective optimal design of sliding base isolation using genetic algorithm. Sci. Iran. 2013, 20, 87-96. [CrossRef] otwiera się w nowej karcie
  22. Jain, S.K.; Thakkar, S.K. Application of base isolation for flexible buildings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1-6 August 2004. paper no. 1924. otwiera się w nowej karcie
  23. Zelleke, D.H.; Elias, S.; Matsagar, V.A.; Jain, A.K. Supplemental dampers in base-isolated buildings to mitigate large isolator displacement under earthquake excitations. Bull. N. Z. Soc. Earthq. Eng. 2015, 48, 100-117. [CrossRef] otwiera się w nowej karcie
  24. Fu, W.; Zhang, C.; Sun, L.; Askari, M.; Samali, B.; Chung, K.L.; Sharafi, P. Experimental investigation of a base isolation system incorporating MR dampers with the high-order single step control algorithm. Appl. Sci. 2017, 7, 344. [CrossRef] otwiera się w nowej karcie
  25. AlMusbahi, S.; Güngör, A. A composite building isolation system for earthquake protection. Eng. Sci. Technol. Int. J. 2019, 22, 399-404. [CrossRef] otwiera się w nowej karcie
  26. Nagarajaiah, S.; Sun, X. Base-isolated FCC building: Impact response in Northridge earthquake. J. Struct. Eng. 2001, 127, 1063-1075. [CrossRef] otwiera się w nowej karcie
  27. Tsai, H.C. Dynamic analysis of base-isolated shear beams bumping against stops. Earthq. Eng. Struct. Dyn. 1997, 26, 515-528. [CrossRef] otwiera się w nowej karcie
  28. Malhotra, P.K. Dynamics of seismic impacts in base-isolated buildings. Earthq. Eng. Struct. Dyn. 1997, 26, 797-813. [CrossRef] otwiera się w nowej karcie
  29. Dimova, S.L. Numerical problems in modelling of collision in sliding systems subjected to seismic excitations. Adv. Eng. Softw. 2000, 31, 467-471. [CrossRef] otwiera się w nowej karcie
  30. Matsagar, V.A.; Jangid, R.S. Seismic response of base-isolated structures during impact with adjacent structures. Eng. Struct. 2003, 25, 1311-1323. [CrossRef] otwiera się w nowej karcie
  31. Komodromos, P.; Polycarpou, P.C.; Papaloizou, L.; Phocas, M.C. Response of seismically isolated buildings considering poundings. Earthq. Eng. Struct. Dyn. 2007, 36, 1605-1622. [CrossRef] otwiera się w nowej karcie
  32. Komodromos, P. Simulation of the earthquake-induced pounding of seismically isolated buildings. Comput. Struct. 2008, 86, 618-626. [CrossRef] otwiera się w nowej karcie
  33. Agarwal, V.K.; Niedzwecki, J.M.; van de Lindt, J.W. Earthquake induced pounding in friction varying base isolated buildings. Eng. Struct. 2007, 29, 2825-2832. [CrossRef] otwiera się w nowej karcie
  34. Mahmoud, S.; Jankowski, R. Pounding-involved response of isolated and non-isolated buildings under earthquake excitation. Earthq. Struct. 2010, 1, 231-252. [CrossRef] otwiera się w nowej karcie
  35. Polycarpou, P.C.; Komodromos, P. Earthquake-induced poundings of a seismically isolated building with adjacent structures. Eng. Struct. 2010, 32, 1937-1951. [CrossRef] otwiera się w nowej karcie
  36. Bedon, C.; Morassi, A. Dynamic testing and parameter identification of a base-isolated bridge. Eng. Struct. 2014, 60, 85-99. [CrossRef] otwiera się w nowej karcie
  37. Vaseghi Amiri, J.; Jalali, S.G. Study of different contact elements in poundings of steel buildings. J. Model. Eng. 2011, 9, 1-20. otwiera się w nowej karcie
  38. Jankowski, R. Pounding between superstructure segments in multi-supported elevated bridge with three-span continuous deck under 3D non-uniform earthquake excitation. J. Earthq. Tsunami 2015, 9, 1550012. [CrossRef] otwiera się w nowej karcie
  39. Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering;
  40. Prentice-Hall: Englewood Cliffs, NJ, USA, 1995. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 123 razy

Publikacje, które mogą cię zainteresować

Meta Tagi