Explainable machine learning for diffraction patterns - Publikacja - MOST Wiedzy

Wyszukiwarka

Explainable machine learning for diffraction patterns

Abstrakt

Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify the data into hit and miss categories in order to achieve data reduction. The quantitative performance established in previous work indicates that CNNs successfully classify serial crystallography data into desired categories [Ke, Brewster, Yu, Ushizima, Yang & Sauter (2018). J. Synchrotron Rad. 25, 655–670], but no qualitative evidence on the internal workings of these networks has been provided. For example, there are no visualization methods that highlight the features contributing to a specific prediction while classifying data in serial crystallography experiments. Therefore, existing deep learning methods, including CNNs classifying serial crystallography data, are like a ‘black box’. To this end, presented here is a qualitative study to unpack the internal workings of CNNs with the aim of visualizing information in the fundamental blocks of a standard network with serial crystallography data. The region(s) or part(s) of an image that mostly contribute to a hit or miss prediction are visualized.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Autorzy (6)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Applied Crystallography nr 56, strony 1494 - 1504,
ISSN: 1600-5767
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Nawaz S., Rahmani V., Pennicard D., Setty S. P. R., Klaudel B., Graafsma H.: Explainable machine learning for diffraction patterns// Journal of Applied Crystallography -,iss. 5 (2023), s.1494-1504
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1107/s1600576723007446
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 63 razy

Publikacje, które mogą cię zainteresować

Meta Tagi