Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
Abstrakt
Biochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts, optimization, and feature selection are critical for improving biomass management techniques. In this research, we explore the influences of these techniques on the accurate forecasting of biochar yield and properties for a range of biomass sources. We emphasize the importance of the interpretability of a model, as this improves human comprehension and trust in ML predictions. Sensitivity analysis is shown to be an effective technique for finding crucial biomass characteristics that influence the synthesis of biochar. Precision prognostics have far-reaching ramifications, influencing industries such as biomass logistics, conversion technologies, and the successful use of biomass as renewable energy. These advances can make a substantial contribution to a greener future and can encourage the development of a circular biobased economy. This work emphasizes the importance of using sophisticated data-driven methodologies such as ML in biochar synthesis, to usher in ecologically friendly energy solutions. These breakthroughs hold the key to a more sustainable and environmentally friendly future.
Cytowania
-
6
CrossRef
-
0
Web of Science
-
1 0
Scopus
Autorzy (9)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Biofuels Bioproducts & Biorefining-Biofpr
nr 18,
strony 567 - 593,
ISSN: 1932-104X - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Nguyen G. V., Sharma P., Ağbulut Ü., Le H. S., Truong T. H., Dzida M., Tran M. H., Le H. C., Tran V. D.: Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy// Biofuels Bioproducts & Biorefining-Biofpr -Vol. 18,iss. 2 (2024), s.567-593
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1002/bbb.2596
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 77 razy
Publikacje, które mogą cię zainteresować
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
- V. G. Nguyen,
- P. Sharma,
- Ü. Ağbulut
- + 6 autorów
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
- V. N. N. Nhanh Van,
- W. Tarełko,
- S. Prabhakar
- + 5 autorów