Abstrakt
This paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations of these approaches. We discuss the quantitative and qualitative aspects of these agents in scenarios that require generalization. For a concise comparison, we present the performance and resource utilization of different agents as follows: The Prolog- based agent showed a base task win rate of 61%, which dropped to 5% in a modified task setting, requiring 13KB of memory. The Q-Learning agent achieved a 2% win rate in the base task, with the modified task performance not applicable, and a memory requirement of 67KB. An agent based on a Convolutional Neural Network (CNN) recorded a 44% win rate on the base task and 32% on the modified task, consuming 134KB of memory. The Deep Q-Network (DQN) agent displayed a 56% win rate in the base task and 46% in the modified task, necessitating a substantial amount of memory, 284MB.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Dobrosolski J., Szymański J., Mora H., Draszawka K.: Neural network agents trained by declarative programming tutors// / : , 2024,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/cec60901.2024.10611953
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 51 razy