Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems - Publikacja - MOST Wiedzy

Wyszukiwarka

Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems

Abstrakt

The paper considers optimizing Model Predictive Control (MPC) for nonlinear plants with output constraints under uncertainties. Although the MPC technology can handle the constraints in the model by solving constraint model based optimization task, satisfying the plant output constraints under the model uncertainty still remains a challenge. The paper proposes Robustly Feasible MPC (RFMPC), which achieves feasibility of the outputs in the controlled plant. The RFMPC which is applied to control quantity in Drinking Water Distribution Systems (DWDS) is illustrated by application to the DWDS example. In the simulation exercise, Genetic Algorithm is selected as the optimization solver and the reduced search space methodology is applied in the implementation under MATLAB/EPANET environment.

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Journal of Artificial Intelligence and Soft Computing Research nr 1, strony 43 - 57,
ISSN: 2083-2567
Język:
angielski
Rok wydania:
2011
Opis bibliograficzny:
Vu N., Brdyś M.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems// Journal of Artificial Intelligence and Soft Computing Research. -Vol. 1., iss. 1 (2011), s.43-57
Weryfikacja:
Politechnika Gdańska

wyświetlono 112 razy

Publikacje, które mogą cię zainteresować

Meta Tagi