Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance - Publikacja - MOST Wiedzy

Wyszukiwarka

Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance

Abstrakt

Thin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects the morphology and the composition of films observed as a Bi:V ratio gradient along the layer deposited on the substrate. Despite BiVO4, two other phases were detected using XRD (X-ray diffraction) and Raman spectroscopy—V2O5 and Bi4V2O11. The V-rich region of the samples deposited under low and intermediate oxygen pressures was covered by V2O5 longitudinal structures protruding from BiVO4 film. Higher oxygen pressure leads to the formation of Bi4V2O11@BiVO4 bulk heterojunction. The presented results suggest that the ablation of the target leads to the plasma formation, where Bi and V containing ions can be spatially separated due to the interactions with oxygen molecules. In order to study the phenomenon more thoroughly, laser-induced breakdown spectroscopy measurements were performed. Then, obtained electrodes were used as photoanodes for photoelectrochemical water splitting. The highest photocurrent was achieved for films deposited under 1 mbar O2 pressure and reached 1 mA cm−2 at about 0.8 V vs Ag/AgCl (3 M KCl). It was shown that V2O5 on the top of BiVO4 decreases its photoactivity, while the presence of a bulk Bi4V2O11@BiVO4 heterojunction is beneficial in water photooxidation.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 47 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Materials nr 13, strony 1 - 16,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Trzciński K., Szkoda M., Gazda M., Karczewski J., Cenian A., Grigorian G., Sawczak M.: Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance// Materials -Vol. 13,iss. 6 (2020), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma13061360
Bibliografia: test
  1. Tayebi, M.; Lee, B. Recent advances in BiVO 4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renew. Sustain. Energy Rev. 2019, 111, 332-343. [CrossRef] otwiera się w nowej karcie
  2. Stoughton, S.; Showak, M.; Mao, Q.; Koirala, P.; Hillsberry, D.A.; Sallis, S.; Kourkoutis, L.F.; Nguyen, K.; Piper, L.F.J.; Tenne, D.A.; et al. Adsorption-controlled growth of BiVO 4 by molecular-beam epitaxy. APL Mater. 2013, 1, 42112. [CrossRef] otwiera się w nowej karcie
  3. Zhao, Z.; Li, Z.; Zou, Z. Electronic structure and optical properties of monoclinic clinobisvanite BiVO 4 . Phys. Chem. Chem. Phys. 2011, 13, 4746-4753. [CrossRef] otwiera się w nowej karcie
  4. Li, T.; He, J.; Peña, B.; Berlinguette, C.P. Curing BiVO 4 Photoanodes with Ultraviolet Light Enhances Photoelectrocatalysis. Angew. Chem. 2016, 55, 1769-1772. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Prévot, M.S.; Sivula, K. Photoelectrochemical Tandem Cells for Solar Water Splitting. J. Phys. Chem. C 2013, 117, 17879-17893. [CrossRef] otwiera się w nowej karcie
  6. Tan, H.L.; Amal, R.; Ng, Y.H. Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review. J. Mater. Chem. A 2017, 5, 16498-16521. [CrossRef] otwiera się w nowej karcie
  7. Thalluri, S.M.; Hernández, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-synthesized W-and Mo-doped BiVO 4 oriented along the {040} facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B Environ. 2016, 180, 630-636. [CrossRef] otwiera się w nowej karcie
  8. Kim, J.H.; Lee, J.S. BiVO 4 -Based Heterostructured Photocatalysts for Solar Water Splitting: A Review. Energy Environ. Focus 2014, 3, 339-353. [CrossRef] otwiera się w nowej karcie
  9. Kim, K.; Nam, S.K.; Park, J.H.; Moon, J.H. Growth of BiVO 4 nanoparticles on a WO 3 porous scaffold: Improved water-splitting by high band-edge light harvesting. J. Mater. Chem. A 2019, 7, 4480-4485. [CrossRef] otwiera się w nowej karcie
  10. Oliveira, A.T.; Rodriguez, M.; Andrade, T.S.; de Souza, H.E.A.; Ardisson, J.D.; Oliveira, H.S.; Lorencon, E.; Silva, A.C.; Nascimento, L.L.; Patrocínio, A.O.T.; et al. High Water Oxidation Performance of W-Doped BiVO 4 Photoanodes Coupled to V 2 O 5 Rods as a Photoabsorber and Hole Carrier. RRL Sol. 2018, 2, 1800089. [CrossRef] otwiera się w nowej karcie
  11. Liu, X.; Liu, Y.; Su, J.; Li, M.; Guo, L. Facile preparation of BiVO 4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting. Int. J. Hydrogen Energy. 2015, 40, 12964-12972. [CrossRef] otwiera się w nowej karcie
  12. Zhou, M.; Bao, J.; Xu, Y.; Zhang, J.; Xie, J.; Guan, M.; Wang, C.; Wen, L.; Lei, Y.; Xie, Y. Photoelectrodes Based upon Mo:BiVO 4 Inverse Opals for Photoelectrochemical Water Splitting. ACS Nano 2014, 8, 7088-7098. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Hernández, S.; Thalluri, S.M.; Sacco, A.; Bensaid, S.; Saracco, G.; Russo, N. Photo-catalytic activity of BiVO 4 thin-film electrodes for solar-driven water splitting. Appl. Catal. A Gen. 2015, 504, 266-271. [CrossRef] otwiera się w nowej karcie
  14. Luo, H.; Mueller, A.H.; McCleskey, T.M.; Burrell, A.K.; Bauer, E.; Jia, Q.X. Structural and photoelectrochemical properties of BiVO 4 thin films. J. Phys. Chem. C 2008, 112, 6099-6102. [CrossRef] otwiera się w nowej karcie
  15. Huang, M.; Bian, J.; Xiong, W.; Huang, C.; Zhang, R. Low-dimensional Mo:BiVO 4 photoanodes for enhanced photoelectrochemical activity. J. Mater. Chem. A 2018, 6, 3602-3609. [CrossRef] otwiera się w nowej karcie
  16. Trzciński, K.; Szkoda, M.; Sawczak, M.; Karczewski, J.; Lisowska-Oleksiak, A. Visible light activity of pulsed layer deposited BiVO 4 /MnO 2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation. Appl. Surf. Sci. 2016, 385, 199-208. [CrossRef] otwiera się w nowej karcie
  17. Nishikawa, H.; Hasegawa, T.; Miyake, A.; Tashiro, Y.; Komasa, S.; Hashimoto, Y. Effect of laser fluence and ambient gas pressure on surface morphology and chemical composition of hydroxyapatite thin films deposited using pulsed laser deposition. Appl. Surf. Sci. 2018, 427, 458-463. [CrossRef] otwiera się w nowej karcie
  18. Jeong, S.Y.; Choi, K.S.; Shin, H.; Kim, T.L.; Song, J.; Yoon, S.; Jang, H.W.; Yoon, M.; Jeon, C.; Lee, J.; et al. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition. ACS Appl. Mater. Interfaces 2017, 9, 505-512. [CrossRef] otwiera się w nowej karcie
  19. Han, H.S.; Shin, S.; Kim, D.H.; Park, I.J.; Kim, J.S.; Huang, P.-S.; Lee, J.-K.; Cho, I.S.; Zheng, X. Boosting the solar water oxidation performance of a BiVO 4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2018, 11, 1299-1306. [CrossRef] otwiera się w nowej karcie
  20. Van, C.N.; Chang, W.S.; Chen, J.; Tsai, K.; Tzeng, W.; Lin, Y.; Kuo, H.; Liu, H.; Chang, K.; Chou, W.; et al. Heteroepitaxial approach to explore charge dynamics across Au/BiVO 4 interface for photoactivity enhancement. Nano Energy 2015, 15, 625-633. [CrossRef] otwiera się w nowej karcie
  21. Amoruso, S.; Sambri, A.; Wang, X. Propagation dynamics of a LaMnO 3 laser ablation plume in an oxygen atmosphere. J. Appl. Phys. 2006, 100, 013302. [CrossRef] otwiera się w nowej karcie
  22. Song, J.; Choi, K.S.; Seo, M.J.; Jo, Y.R.; Lee, J.; Kim, T.L.; Jeong, S.Y.; An, H.; Jang, H.W.; Kim, B.J.; et al. Nonequilibrium Deposition in Epitaxial BiVO 4 Thin Film Photoanodes for Improving Solar Water Oxidation Performance. Chem. Mater. 2018, 30, 5673-5681. [CrossRef] otwiera się w nowej karcie
  23. Hasabeldaim, E.; Ntwaeaborwa, O.M.; Kroon, R.E.; Motaung, D.E.; Coetsee, E.; Swart, H.C. Effect of PLD growth atmosphere on the physical properties of ZnO:Zn thin films. Opt. Mater. 2017, 74, 76-85. [CrossRef] otwiera się w nowej karcie
  24. Jackson, B.D.; Herman, P.R. Vacuum-ultraviolet pulsed-laser deposition of silicon dioxide thin films. Appl. Surf. Sci. 1998, 127-129, 595-600. [CrossRef] otwiera się w nowej karcie
  25. Rettie, A.J.E.; Mozaffari, S.; McDaniel, M.D.; Pearson, K.N.; Ekerdt, J.G.; Markert, J.T.; Mullins, C.B. Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films. J. Phys. Chem. C 2014, 118, 26543-26550. [CrossRef] otwiera się w nowej karcie
  26. Murcia-López, S.; Fabrega, C.; Monllor-Satoca, D.; Hernández-Alonso, M.D.; Penelas-Pérez, G.; Morata, A.; Morante, J.R.; Andreu, T. Tailoring multilayered BiVO 4 photoanodes by pulsed laser deposition for water splitting. ACS Appl. Mater. Interfaces. 2016, 8, 4076-4085. [CrossRef] otwiera się w nowej karcie
  27. Prześniak-Welenc, M.; Szreder, N.A.; Winiarski, A.; Łapiński, M.; Kościelska, B.; Barczyński, R.J.; Gazda, M.; Sadowski, W. Electrical conductivity and relaxation processes in V 2 O 5 nanorods prepared by sol-gel method. Phys. Status Solidi 2015, 252, 2111-2116. [CrossRef] otwiera się w nowej karcie
  28. Sambri, A.; Khare, A.; Mirabella, S.; di Gennaro, E.; Safeen, A.; di Capua, F.; Campajola, L.; Scotti, U.; di Uccio Amoruso, S.; Granozio, F.M. Plasma dynamics and cations off-stoichiometry in LaAlO 3 films grown in high pressures regimes. J. Appl. Phys. 2016, 120, 225306. [CrossRef] otwiera się w nowej karcie
  29. Sambri, A.; Aruta, C.; di Gennaro, E.; Wang, X.; di Uccio, U.S.; Granozio, F.M.; Amoruso, S. Effects of oxygen background pressure on the stoichiometry of a LaGaO 3 laser ablation plume investigated by time and spectrally resolved two-dimensional imaging. J. Appl. Phys. 2016, 119, 125301. [CrossRef] otwiera się w nowej karcie
  30. Thestrup, B.; Toftmann, B.; Schou, J.; Doggett, B.; Lunney, J.G. A comparison of the laser plume from Cu and YBCO studied with ion probes. Appl. Surf. Sci. 2003, 208-209, 33-38. [CrossRef] otwiera się w nowej karcie
  31. Lv, C.; Chen, G.; Sun, J.; Zhou, Y.; Fan, S.; Zhang, C. Realizing nanosized interfacial contact via constructing BiVO 4 /Bi 4 V 2 O 11 element-copied heterojunction nanofibres for superior photocatalytic properties. Appl. Catal. B Environ. 2015, 179, 54-60. [CrossRef] otwiera się w nowej karcie
  32. Bott, A.W. Electrochemistry of Semiconductors. Curr. Sep. 1998, 3, 87-91.
  33. Yaw, C.S.; Ruan, Q.; Tang, J.; Soh, A.K.; Chong, M.N. A Type II n-n staggered orthorhombic V 2 O 5 /monoclinic clinobisvanite BiVO 4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chem. Eng. J. 2019, 364, 177-185. [CrossRef] otwiera się w nowej karcie
  34. Su, J.; Zou, X.; Li, G.; Wei, X.; Yan, C.; Wang, Y.; Zhao, J.; Zhou, L.; Chen, J. Macroporous V 2 O 5 −BiVO 4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges. J. Phys. Chem. C 2011, 115, 8064-8071. [CrossRef] otwiera się w nowej karcie
  35. McDonald, K.J.; Choi, K. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO 4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553-8557. [CrossRef] otwiera się w nowej karcie
  36. Santos, W.S.d.; Rodriguez, M.; Afonso, A.S.; Mesquita, J.P.; Nascimento, L.L.; Patrocínio, A.O.T.; Silva, A.C.; Oliveira, L.C.A.; Fabris, J.D.; Pereira, M.C. A hole inversion layer at the BiVO 4 /Bi 4 V 2 O 11 interface produces a high tunable photovoltage for water splitting. Sci. Rep. 2016, 6, 31406. [CrossRef] otwiera się w nowej karcie
  37. Trzciński, K.; Gąsiorowski, J.; Borowska-Centkowska, A.; Szkoda, M.; Sawczak, M.; Hingerl, K.; Zahn, D.R.T.; Lisowska-Oleksiak, A. Optical and photoelectrochemical characterization of pulsed laser deposited Bi 4 V 2 O 11 , BICUVOX, and BIZNVOX. Thin Solid Films 2017, 638, 251-257. [CrossRef] otwiera się w nowej karcie
  38. Chatchai, P.; Murakami, Y.; Kishioka, S.; Nosaka, A.Y.; Nosaka, Y. Efficient photocatalytic activity of water oxidation over WO 3 /BiVO 4 composite under visible light irradiation. Electrochim. Acta 2009, 54, 1147-1152. [CrossRef] otwiera się w nowej karcie
  39. Santos, W.S.d.; Almeida, L.D.; Afonso, A.S.; Rodriguez, M.; Mesquita, J.P.; Monteiro, D.S.; Oliveira, L.C.A.; Fabris, J.D.; Pereira, M.C. Photoelectrochemical water oxidation over fibrous and sponge-like BiVO 4 /β-Bi 4 V 2 O 11 photoanodes fabricated by spray pyrolysis. Appl. Catal. B Environ. 2016, 182, 247-256. [CrossRef] otwiera się w nowej karcie
  40. Song, J.; Seo, M.J.; Lee, T.H.; Jo, Y.-R.; Lee, J.; Kim, T.L.; Kim, S.-Y.; Kim, S.-M.; Jeong, S.Y.; An, H.; et al. Tailoring Crystallographic Orientations to Substantially Enhance Charge Separation Efficiency in Anisotropic BiVO 4 Photoanodes. ACS Catal. 2018, 8, 5952-5962. [CrossRef] otwiera się w nowej karcie
  41. Zhang, W.; Wu, F.; Li, J.; Yan, D.; Tao, J.; Ping, Y.; Liu, M. Unconventional Relation between Charge Transport and Photocurrent via Boosting Small Polaron Hopping for Photoelectrochemical Water Splitting. ACS Energy Lett. 2018, 3, 2232-2239. [CrossRef] otwiera się w nowej karcie
  42. Zhang, W.; Yan, D.; Tong, X.; Liu, M. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes. Adv. Funct. Mater. 2018, 28, 1705512. [CrossRef] © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 109 razy

Publikacje, które mogą cię zainteresować

Meta Tagi