Zjawisko kawitacji hydrodynamicznej i akustycznej w połączeniu z zaawansowanymi procesami utleniania, jako skuteczne metody oczyszczania ścieków z produkcji asfaltów - Publikacja - MOST Wiedzy

Wyszukiwarka

Zjawisko kawitacji hydrodynamicznej i akustycznej w połączeniu z zaawansowanymi procesami utleniania, jako skuteczne metody oczyszczania ścieków z produkcji asfaltów

Abstrakt

W pracy doktorskiej przedstawiono wyniki badań nad zastosowaniem kawitacji hydrodynamicznej oraz akustycznej, wspomaganych zewnętrznymi odczynnikami utleniającymi (ozonem; nadtlenkiem wodoru; oraz ich mieszaniną – tzw. odczynnikiem peroxone) do obniżenia ładunku zanieczyszczeń ścieków rzeczywistych z produkcji asfaltów. Przeprowadzono szczegółową analizę zmian zawartości lotnych związków organicznych tlenu i siarki oraz porównano efektywność obniżania sumarycznych wskaźników zanieczyszczenia: CHZT i BZT5. Wykazano, że najskuteczniejszy proces oczyszczania ścieków z produkcji asfaltów oraz ścieków modelowych obejmuje kawitację hydrodynamiczną wspomaganą odczynnikiem peroxone. Uzyskano wysoką efektywność utleniania fenolu i jego pochodnych charakteryzujących się wysoką biotoksycznością. Analiza ekonomiczna procesów oczyszczania wskazała, że kawitacja hydrodynamiczna wspomagana AOPs może stanowić efektywną metodę wstępnego, chemicznego oczyszczania ścieków z produkcji asfaltów, stosowaną przed etapem oczyszczania biologicznego.

Autor (1)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 163 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (Author(s))

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Doktoraty, rozprawy habilitacyjne, nostryfikacje
Typ:
praca doktorska pracowników zatrudnionych w PG oraz studentów studium doktoranckiego
Język:
polski
Rok wydania:
2018
Bibliografia: test
  1. P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res. 35 (2002) 686-694. otwiera się w nowej karcie
  2. N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem. 17 (2010) 990-1003. otwiera się w nowej karcie
  3. M.V. Bagal, P.R. Gogate, Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review, Ultrason. Sonochem. 21 (2014) 1-14. otwiera się w nowej karcie
  4. T. Oppenländer, Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs)-Principles, Reaction Mechanisms, Reactor Concepts, John Wiley & Sons, 2003. otwiera się w nowej karcie
  5. Y.L. Song, J.T. Li, Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound, Ultrason. Sonochem. 16 (2009) 440-444. otwiera się w nowej karcie
  6. K.S. Suslick, Sonochemistry, Science 247 (1990) 1439-1445. otwiera się w nowej karcie
  7. C.D. Wu, Z.L. Zhang, Y. Wu, L. Wang, L.J. Chen, Effects of operating parameters and additives on degradation of phenol in water by the combination of H2O2 and hydrodynamic cavitation, Desalin. Water Treat. 53 (2015) 462-468. otwiera się w nowej karcie
  8. M.A. Beckett, I. Hua, Elucidation of the 1,4-dioxane decomposition pathway at discrete ultrasonic frequencies, Environ. Sci. Technol. 34 (2000) 3944-3953. otwiera się w nowej karcie
  9. J. Bagieński, Kawitacja w urządzeniach wodociągowych i ciepłowniczych, Politechnika Poznańska, Poznań, 1998.
  10. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process, Ultrason. Sonochem. 15 (2008) 49-54. otwiera się w nowej karcie
  11. A.J. Barik, P.R. Gogate, Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone, Ultrason. Sonochem. 30 (2016) 70-78. otwiera się w nowej karcie
  12. S. Raut-Jadhav, D. Saini, S. Sonawane, A. Pandit, Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution, Ultrason. Sonochem. 28 (2016) 283-293. otwiera się w nowej karcie
  13. D.R. Reddy, G.K. Dinesh, S. Anandan, T. Sivasankar, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO2, Chem. Eng. Process. 99 (2016) 10-18. otwiera się w nowej karcie
  14. D.H. Bremner, S. Carlo, A.G. Chakinala, G. Cravotto, Mineralisation of 2,4-di- chlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process, Ultrason. Sonochem. 15 (2008) 416-419. otwiera się w nowej karcie
  15. I. Grcic, M. Obradovic, D. Vujevic, N. Koprivanac, Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution: from an experimental design to the mechanistic modeling, Chem. Eng. J. 164 (2010) 196-207.
  16. S. Raut-Jadhav, V. Kumar Saharan, D. Pinjari, S. Sonawane, D. Saini, A. Pandit, Synergetic effect of combination of AOP's (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide, J. Hazard. Mater. 261 (2013) 139-147. otwiera się w nowej karcie
  17. P.R. Gogate, P.N. Patil, Combined treatment technology based on synergism be- tween hydrodynamic cavitation and advanced oxidation processes, Ultrason. Sonochem. 25 (2015) 60-69. otwiera się w nowej karcie
  18. D. Drijvers, H. van Langenhove, L. Nguyen, T. Kim, L. Bray, Sonolysis of an M. Gągol et al. Chemical Engineering Journal 338 (2018) 599-627 otwiera się w nowej karcie
  19. aqueous mixture of trichloroethylene and chlorobenzene, Ultrason. Sonochem. 6 (1999) 115-121. otwiera się w nowej karcie
  20. A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater. 173 (2010) 517-522. otwiera się w nowej karcie
  21. Z. XiaoBin, Z. JiaKai, Q. LiMin, Z. XueJun, Calculation and verification of dyna- mical cavitation model for quasi-steady cavitating flow, Int. J. Mass Transfer. 86 (2015) 294-301.
  22. N. Tran, P. Drogui, L. Nguyen, S.K. Brar, Optimization of sono-electrochemical oxidation of ibuprofen in wastewater, J. Environ. Chem. Eng. 3 (2015) 2637-2646. otwiera się w nowej karcie
  23. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Z. Blazeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem. 20 (2013) 1104-1112. otwiera się w nowej karcie
  24. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, M. Strazˇar, E. Heath, Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater, Ultrason. Sonochem. 21 (2014) 1213-1221. otwiera się w nowej karcie
  25. K.P. Mishra, P.R. Gogate, Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives, Sep. Purif. Technol. 75 (2010) 385-391. otwiera się w nowej karcie
  26. J.G.D. Filho, M.P. Assis, A.I.B. Genovez, Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus, J. Hydro-environ. Res. 9 (2015) 259-267.
  27. P. Li, Y. Song, S. Yu, Removal of Microcystis aeruginosa using hydrodynamic ca- vitation: performance and mechanisms, Water Res. 62 (2014) 241-248. otwiera się w nowej karcie
  28. M. Petkovšek, M. Mlakar, M. Levstek, M. Strazar, B. Širok, M. Dular, A novel ro- tation generator of hydrodynamic cavitation for waste-activated sludge disin- tegration, Ultrason. Sonochem. 26 (2015) 408-414. otwiera się w nowej karcie
  29. A.G. Chakinala, P.R. Gogateb, A.E. Burgessa, D.H. Bremnera, Industrial waste- water treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing, Chem. Eng. J. 152 (2009) 498-502. otwiera się w nowej karcie
  30. M.V. Bagal, P.R. Gogate, Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem. 20 (2013) 1226-1235. otwiera się w nowej karcie
  31. J. Nawrocki, Zaawansowane procesy utleniania w oczyszczaniu wody, Ochr. Sr. 74 (1999) 32-36.
  32. L.J. Xu, W. Chu, N. Graham, Degradation of di-n-butyl phthalate by a homo- geneous sono-photo-Fenton process with in situ generated hydrogen peroxide, Chem. Eng. J. 240 (2014) 541-547. otwiera się w nowej karcie
  33. E. Gonze, L. Fourel, Y. Gonthier, P. Boldo, A. Bernis, Wastewater pretreatment with ultrasonic irradiation to reduce toxicity, Chem. Eng. J. 73 (1999) 93-100. otwiera się w nowej karcie
  34. K. Makino, M.M. Mossoba, P. Riesz, Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms, J. Am. Chem. Soc. 87 (1983) 1369-1377. otwiera się w nowej karcie
  35. J.M. Wu, H.S. Huang, C.D. Livengood, UItrasonic destruction of chlorinated compounds in aqueous solution, Environ. Prog. 11 (1992) 195-201. otwiera się w nowej karcie
  36. A. Henglein, C. Kormann, Scavenging of OH radicals produced in the sonolysis of water, Int. J. Radiat. Biol. 48 (1985) 251-258. otwiera się w nowej karcie
  37. P.R. Gogate, Cavitation: an auxiliary technique in wastewater treatment schemes, Adv. Environ. Res. 6 (2002) 335-358. otwiera się w nowej karcie
  38. V.S. Moholkar, P. Senthilkumar, A.B. Pandit, Hydrodynamic cavitation for sono- chemical effects, Ultrason. Sonochem. 6 (1999) 53-65. otwiera się w nowej karcie
  39. M.P. Badve, M.N. Bhagat, A.B. Pandit, Microbial disinfection of seawater using hydrodynamic cavitation, Sep. Purif. Technol. 151 (2015) 31-38. otwiera się w nowej karcie
  40. M. Petkovšek, M. Zupanc, M. Dular, T. Kosjek, E. Heath, B. Kompare, B. Širok, Rotation generator of hydrodynamic cavitation for water treatment, Sep. Purif. Technol. 118 (2013) 415-423. otwiera się w nowej karcie
  41. S.M. Ashrafizadeh, H. Ghassemi, Experimental and numerical investigation on the performance of small-sized cavitating venturis, Flow Meas. Instrum. 42 (2015) 6-15. otwiera się w nowej karcie
  42. Y. Xiong, F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Mining Sci. Technol. 25 (2015) 523-529. otwiera się w nowej karcie
  43. H. Ghassemi, H.F. Fasih, Application of small size cavitating venturi as flow controller and flow meter, Flow Meas. Instrum. 22 (2011) 406-412. otwiera się w nowej karcie
  44. T. Jain, J. Carpenter, V.K. Saharan, CFD analysis and optimization of circular and slit venturi for cavitational activity, J. Mater. Sci. Mech. Eng. 1 (2014) 28-33.
  45. T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng. 89 (2011) 1366-1375. otwiera się w nowej karcie
  46. A. Ulas, Passive flow control in liquid-propellant rocket engines with cavitating venture, Flow Meas. Instrum. 17 (2006) 94-97. otwiera się w nowej karcie
  47. K. Jung, M. Hwang, Y. Yun, M. Cha, K. Ahn, Development of a novel electric field- assisted modified hydrodynamic cavitation system for disintegration of waste activated sludge, Ultrason. Sonochem. 21 (2014) 1635-1640. otwiera się w nowej karcie
  48. J.B. Parsa, S.A.E. Zonouzian, Optimization of a heterogeneous catalytic hydro- dynamic cavitation reactor performance in decolorization of Rhodamine B: ap- plication of scrap iron sheets, Ultrason. Sonochem. 20 (2013) 1442-1449.
  49. M.T. Angaji, R. Ghiaee, Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process, Ultrason. Sonochem. 23 (2015) 257-265.
  50. M. Badve, P. Gogate, A. Pandit, L. Csoka, Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry, Sep. Purif. Technol. 106 (2013) 15-21. otwiera się w nowej karcie
  51. R.K. Joshi, Parag R. Gogate, Degradation of dichlorvos using hydrodynamic ca- vitation based treatment strategies, Ultrason. Sonochem. 19 (2012) 532-539. otwiera się w nowej karcie
  52. D. Ghayal, A.B. Pandit, V.K. Rathod, Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil, Ultrason. Sonochem. 20 (2013) 322-328. otwiera się w nowej karcie
  53. M. Sivakumar, A.B. Pandit: Hydrodynamic cavitation assisted degradation of rhodamine B: a technologically viable wastewater treatment technique, in: International Conference on Science and Technology under Chemical Society of Canada, October 12-13, 2000, New Delhi, India. otwiera się w nowej karcie
  54. P.S. Kumar, M. Sivakumar, A.B. Pandit, Experimental quantification of chemical efects of hydrodynamic cavitation, Chem. Eng. Sci. 55 (2000) 1633-1639.
  55. P. Braeutigam, M. Franke, Z.L. Wu, B. Ondruschka, Role of different parameters in the optimization of hydrodynamic cavitation, Chem. Eng. Technol. 33 (2010) 932-940. otwiera się w nowej karcie
  56. K.K. Jyoti, A.B. Pandit, Water disinfection by acoustic and hydrodynamic cavita- tion, Biochem. Eng. J. 7 (2001) 201-212. otwiera się w nowej karcie
  57. M.P. Badve, T. Alpar, A.B. Pandit, P.R. Gogate, L. Csoka, Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental vali- dation based on KI decomposition studies, Ultrason. Sonochem. 22 (2015) 272-277. otwiera się w nowej karcie
  58. P.R. Gogate, Cavitational reactors for process intensification of chemical proces- sing applications: a critical review, Chem. Eng. Process. 47 (2008) 515-527. otwiera się w nowej karcie
  59. S. Asgharzadehahmadi, A.A.A. Raman, R. Parthasarathy, B. Sajjadi, Sonochemical reactors: review on features, advantages and limitations, Renew. Sustain. Energy Rev. 63 (2016) 302-314. otwiera się w nowej karcie
  60. A.K. Shriwas, P.R. Gogate, Ultrasonic degradation of methyl Parathion in aqueous solutions: intensification using additives and scale up aspects, Sep. Purif. Technol. 79 (2011) 1-7. otwiera się w nowej karcie
  61. B. Neppoliana, H. Junga, H. Choi, J.H. Leea, J.W. Kang, Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion, Water Res. 36 (2002) 4699-4708. otwiera się w nowej karcie
  62. A.G. Chakinala, D.H. Bremner, P.R. Gogate, K.C. Namkung, A.E. Burgess, Multivariate analysis of phenol mineralisation by combined hydrodynamic cavi- tation and heterogeneous advanced Fenton processing, Appl. Catal. B: Environ. 78 (2008) 11-18. otwiera się w nowej karcie
  63. D. Liu, E. Vorobiev, R. Savoire, J.L. Lanoisellé, Comparative study of ultrasound- assisted and conventional stirred dead-end microfiltration of grape pomace ex- tracts, Ultrason. Sonochem. 20 (2013) 708-714. otwiera się w nowej karcie
  64. I. Worapun, K. Pianthong, P. Thaiyasuit, Optimization of biodiesel production from crude palm oil using ultrasonic irradiation assistance and response surface methodology, J. Chem. Technol. Biotechnol. 87 (2012) 189-197. otwiera się w nowej karcie
  65. A.S. Badday, A.Z. Abdullah, K.T. Lee, M.S. Khayoon, Intensification of biodiesel production via ultrasonic-assisted process: a critical review on fundamentals and recent development, Renew. Sustain. Energy Rev. 16 (2012) 4574-4587. otwiera się w nowej karcie
  66. I. Lee, J. Han, The effects of waste-activated sludge pretreatment using hydro- dynamic cavitation for methane production, Ultrason. Sonochem. 20 (2013) 1450-1455. otwiera się w nowej karcie
  67. L. Csoka, S.N. Katekhaye, P.R. Gogate, Comparison of cavitational activity in different configurations of sonochemical reactors using model reaction supported with theoretical simulations, Chem. Eng. J. 178 (2011) 384-390. otwiera się w nowej karcie
  68. F. Parvizian, M. Rahimi, M. Faryadi, Macro-and micromixing in a novel sono- chemical reactor using high frequency ultrasound, Chem. Eng. Processing: Process Intensif. 50 (2011) 732-740. otwiera się w nowej karcie
  69. P.R. Gogate, S. Mujumdar, A.B. Pandit, Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction, Adv. Environ. Res. 7 (2003) 283-299. otwiera się w nowej karcie
  70. P.R. Gogate, A.B. Pandit, A review and assessment of hydrodynamic cavitation as a technology for the future, Ultrason. Sonochem. 12 (2005) 21-27. otwiera się w nowej karcie
  71. A.A. Pradhan, P.R. Gogate, Removal of p-nitrophenol using hydrodynamic cavi- tation and Fenton chemistry at pilot scale operation, Chem. Eng. J. 156 (2010) 77-82. otwiera się w nowej karcie
  72. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem. 21 (2014) 1770-1777. otwiera się w nowej karcie
  73. W. Jitschin, M. Ronzheimer, S. Khodabakhshi, Gas flow measurement by means of orifices and Venturi tubes, Vacuum 53 (1-2) (1999) 181-185. otwiera się w nowej karcie
  74. G.G. Dastane, M.P. Badve, V.K. Saharan, A.B. Pandit, Numerical optimization and experimental validation of hydrodynamic cavitating device, in: 8th Int. Symp. Cavitation, 2012, pp. 978-981, https://doi.org/10.3850/978-981-07-2826-7. otwiera się w nowej karcie
  75. G.L. Maddikeri, P.R. Gogate, A.B. Pandit, Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil, Fuel 137 (2014) 285. otwiera się w nowej karcie
  76. P.R. Gogate, A.B. Pandit, Engineering design methods for cavitation reactors II: hydrodynamic cavitation, AIChE J. 46 (2000) 1641-1649. otwiera się w nowej karcie
  77. V.S. Moholkar, A.B. Pandit, Bubble behavior in hydrodynamic cavitation: effect of turbulence, AIChE J. 43 (1997) 1641-1648. otwiera się w nowej karcie
  78. P.R. Gogate, A.B. Pandit, Hydrodynamic cavitation reactors: a state of the art review, Rev. Chem. Eng. 17 (2001) 1-85. otwiera się w nowej karcie
  79. P.S. Kumar, Studies in cavitation (M. Chem. Engg. Thesis), Univ. of Mumbai, Mumbai, India, 1997.
  80. S. Mujumdar, A.B. Pandit, Study of catalytic isomerisation of maleic acid to fu- maric acid: effect of ultrasound, Ind. Chem. Eng. 40 (1998) 187-192.
  81. V.K. Saharan, M.P. Badve, A.B. Pandit, Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J. 178 (2011) 100-107. otwiera się w nowej karcie
  82. M.M. Gore, V.K. Saharan, D.V. Pinjari, P.V. Chavan, A.B. Pandit, Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques, Ultrason. Sonochem. 21 (2014) 1075-1082. otwiera się w nowej karcie
  83. J.P. Tullis, Choking and supercavitating valves, J. Hydraul. Div. 97 (1971) otwiera się w nowej karcie
  84. M. Gągol et al. Chemical Engineering Journal 338 (2018) 599-627
  85. A.F. Carlucci, D. Pramer, An evaluation of factors affecting the survival of Escherichia coli in sea water, Appl. Environ. Microbiol. 8 (1960) 247-250. otwiera się w nowej karcie
  86. C.E. Starliper, B.J. Watten, Bactericidal efficacy of elevated pH on fish pathogenic and environmental bacteria, J. Adv. Res. 4 (2013) 345-353. otwiera się w nowej karcie
  87. P.N. Patil, P.R. Gogate, Degradation of methyl parathion using hydrodynamic cavitation: Effect of operating parameters and intensification using additives, Sep. Purif. Technol. 95 (2012) 172-179. otwiera się w nowej karcie
  88. K.S. Suslick, M.M. Mdleleni, J.T. Ries, Chemistry induced by hydrodynamic ca- vitation, J. Am. Chem. Soc. 119 (1997) 9303-9304. otwiera się w nowej karcie
  89. M.H. Entezari, P. Kruus, Effect of frequency on sonochemical reactions II. Temperature and intensity effects, Ultrason. Sonochem. 3 (1996) 19-24. otwiera się w nowej karcie
  90. N.P. Vichare, P. Senthilkumar, V.S. Moholkar, P.R. Gogate, A.B. Pandit, Energy analysis in acoustic cavitation, Ind. Eng. Chem. Res. 39 (2000) 1480-1486. otwiera się w nowej karcie
  91. Z.L. Wu, B. Ondruschka, P. Bräutigam, Degradation of chlorocarbons driven by hydrodynamic cavitation, Chem. Eng. Technol. 30 (2007) 642-648. otwiera się w nowej karcie
  92. J.-H. Sun, S.-P. Sun, M.-H. Fan, H.-Q. Guo, L.-P. Qiao, R.-X. Sun, A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater. 148 (2007) 172-177. otwiera się w nowej karcie
  93. V. Kavitha, K. Palanivelu, Destruction of cresols by Fenton oxidation process, Water Res. 39 (2005) 3062-3072. otwiera się w nowej karcie
  94. H. Zhang, H.J. Choi, C.P. Huang, Optimization of Fenton process for the treatment of landfill leachate, J. Hazard. Mater. 125 (2005) 166-174. otwiera się w nowej karcie
  95. F.J. Rivas, F. Beltran, O. Gimeno, F. Carvalho, Fenton-like oxidation of landfill leachate, Environ. Sci. Eng. 38 (2003) 371-379. otwiera się w nowej karcie
  96. T. Zhou, Y. Li, F.-S. Wong, X. Lu, Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance, Ultrason. Sonochem. 15 (2008) 782-790. otwiera się w nowej karcie
  97. J.-H. Sun, S.-P. Sun, J.-Y. Sun, R.-X. Sun, L.-P. Qiao, H.-Q. Guo, M.-H. Fan, Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation, Ultrason. Sonochem. 14 (2007) 761-766. otwiera się w nowej karcie
  98. Y.G. Adewuyi, Sonochemistry: environmental science and engineering applica- tions, Ind. Eng. Chem. Res. 40 (2001) 4681-4715. otwiera się w nowej karcie
  99. T.H. Wang, S.F. Kang, Y.H. Lin, Comparison among Fenton-related processes to remove 2,4-dinitrophenol, J. Environ. Sci. Health A. 34 (1999) 1267-1281. otwiera się w nowej karcie
  100. C. Özdemir, M.K. Oden, S. Sahinkaya, E. Kalipci, Color removal from synthetic textile wastewater by sono-fenton process, Clean, Soil Air, Water 39 (2011) 60-67. otwiera się w nowej karcie
  101. A. Babuponnusami, K. Muthukumar, Degradation of phenol in aqueous solution by fenton, sono-fenton and sono-photo-fenton methods, Clean Soil Air Water 39 (2011) 142-147. otwiera się w nowej karcie
  102. X. Wang, Z. Yao, J. Wang, W. Guo, G. Li, Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation, Ultrason. Sonochem. 15 (2008) 43-48. otwiera się w nowej karcie
  103. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng. 4 (2016) 762-787. otwiera się w nowej karcie
  104. C.C. Jiang, S.Y. Pang, F. Ouyang, J. Ma, J. Jiang, A new insight into Fenton and Fenton-like processes for water treatment, J. Hazard. Mater. 174 (2010) 813-817. otwiera się w nowej karcie
  105. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  106. J.J. Wu, M. Muruganandham, J.S. Yang, S.S. Lin, Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH, Catal. Commun. 7 (2006) 901-906. otwiera się w nowej karcie
  107. X.F. Xue, K. Hanna, M. Abdelmoula, N.S. Deng, Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations, Appl. Catal. B 89 (2009) 432-440. otwiera się w nowej karcie
  108. X.F. Xue, K. Hanna, N.S. Deng, Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide, J. Hazard. Mater. 166 (2009) 407-414. otwiera się w nowej karcie
  109. H. Zhang, X.G. Wu, X.W. Li, Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process, Chem. Eng. J. 210 (2012) 188-194. otwiera się w nowej karcie
  110. P.P. Gan, S.F.Y. Li, Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process, Chem. Eng. J. 229 (2013) 351-363. otwiera się w nowej karcie
  111. A.L. Prajapat, P.R. Gogate, Intensified depolymerization of aqueous poly- acrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ultraviolet light and hydrogen peroxide, Ultrason. Sonochem. 31 (2016) 371-382. otwiera się w nowej karcie
  112. L.K. Weavers, M.R. Hoffmann, Sonolytic decomposition of ozone in aqueous so- lution: mass transfer effects, Environ. Sci. Technol. 32 (1998) 3941-3947. otwiera się w nowej karcie
  113. Z. Wu, M. Franke, B. Ondruschka, Y. Zhang, Y. Ren, P. Braeutigam, W. Wang, Enhanced effect of suction-cavitation on the ozonation of phenol, J. Hazard. Mater. 190 (2011) 375-380. otwiera się w nowej karcie
  114. Z. Wu, H. Shen, B. Ondruschka, Y. Zhang, W. Wang, D.H. Bremner, Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozo- nation, J. Hazard. Mater. 235-236 (2012) 152-158. otwiera się w nowej karcie
  115. L.K. Weavers, F.H. Ling, M.R. Hoffmann, Aromatic compound degradation in water using a combination of sonolysis and ozonolysis, Environ. Sci. Technol. 32 (1998) 2727-2733. otwiera się w nowej karcie
  116. R. Lall, R. Mutharasan, Y.T. Shah, P. Dhurjati, Decolorization of the dye, reactive blue 19, using ozonation, ultrasound, and ultrasound-enhanced ozonation, Water Environ. Res. 75 (2003) 171-179. otwiera się w nowej karcie
  117. H. Destaillats, A.J. Colussi, J.M. Joseph, M.R. Hoffmann, Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange, J. Phys. Chem. A 104 (2000) 8930-8935. otwiera się w nowej karcie
  118. L.K. Weavers, N. Malmstadt, M.R. Hoffmann, Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation, Environ. Sci. Technol. 34 (2000) 1280-1285. otwiera się w nowej karcie
  119. J.W. Kang, M.R. Hoffmann, Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone, Environ. Sci. Technol. 32 (1998) 3194-3199. otwiera się w nowej karcie
  120. Y.L. Pang, A.Z. Abdullah, S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination 277 (2014) 1-14. otwiera się w nowej karcie
  121. S. Song, M. Xia, Z. He, H. Ying, B. Lu, J. Chen, Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis, J. Hazard. Mater. 144 (2007) 532-537. otwiera się w nowej karcie
  122. Z. He, S. Song, H. Ying, L. Xu, J. Chen, p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism, Ultrason. Sonochem. 14 (2007) 568-574. otwiera się w nowej karcie
  123. C.W. Yang, D. Wang, Q. Tang, The synthesis of NdFeB magnetic activated carbon and its application in degradation of azo dye methyl orange by Fenton-like pro- cess, J. Taiwan Inst. Chem. Eng. 45 (2014) 2584-2589. otwiera się w nowej karcie
  124. L.P. Ramteke, P.R. Gogate, Treatment of toluene, benzene, naphthalene and xy- lene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes, J. Ind. Eng. Chem. 28 (2015) 247-260. otwiera się w nowej karcie
  125. M.V. Bagal, P.R. Gogate, Sonochemical degradation of alachlor in the presence of process intensifying additives, Sep. Purif. Technol. 90 (2012) 92-100. otwiera się w nowej karcie
  126. A. Šarc, T. Stepišnik-Perdih, M. Petkovšek, M. Dular, The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation, Ultrason. Sonochem. 34 (2017) 51-59. otwiera się w nowej karcie
  127. B. Bethi, S.H. Sonawane, G.S. Rohit, C.R. Holkar, D.V. Pinjari, B.A. Bhanvase, A.B. Pandit, Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP, Ultrason. Sonochem. 28 (2016) 150-160. otwiera się w nowej karcie
  128. D. Musmarra, M. Prisciandaro, M. Capocelli, D. Karatza, P. Iovino, S. Canzano, A. Lancia, Degradation of ibuprofen by hydrodynamic cavitation: reaction path- ways and effect of operational parameters, Ultrason. Sonochem. 29 (2016) 76-83. otwiera się w nowej karcie
  129. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic com- pounds emission profiles from hot road bitumens, Chemosphere 107 (2014) 23-30. otwiera się w nowej karcie
  130. E. Gilgenast, G. Boczkaj, A. Przyjazny, M. Kamiński, Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen, Anal. Bioanal. Chem. 401 (2011) 1059-1069. otwiera się w nowej karcie
  131. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxi- dation kinetics of postoxidative effluents using gas chromatography with pulsed flame photometric detection (GC-PFPD), Ind. Eng. Chem. Res. 49 (2010) 12654-12662. otwiera się w nowej karcie
  132. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 53 (2014) 1503-1514. otwiera się w nowej karcie
  133. Y. Lure, P.E. Kandzas, A.A. Mokina, Russ. J. Phys. Chem. 36 (1962) 1422-1425.
  134. K. Inazu, Y. Nagata, Y. Maeda, Decomposition of chlorinated hydrocarbons in aqueous solutions by ultrasonic irradiation, Chem. Soc. Jpn. Chem. Lett. 22 (1) (1993) 57-60. otwiera się w nowej karcie
  135. C. Petrier, A. Francony, Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment, Wat. Sci. Technol. 35 (1997) 175-180. otwiera się w nowej karcie
  136. P. Finkbeiner, M. Franke, F. Anschuetz, A. Ignaszak, M. Stelter, P. Braeutigam, Sonoelectrochemical degradation of the anti-inflammatory drug diclofenac in water, Chem. Eng. J. 273 (2015) 214-222. otwiera się w nowej karcie
  137. P.R. Gogate, G.S. Bhosale, Comparison of effectiveness of acoustic and hydro- dynamic cavitationin combined treatment schemes for degradation of dye was- tewaters, Chem. Eng. Process. 71 (2013) 59-69. otwiera się w nowej karcie
  138. R.H. Jawale, P.R. Gogate, A.B. Pandit, Treatment of cyanide containing waste- water using cavitation based approach, Ultrason. Sonochem. 21 (2014) 1392-1399. otwiera się w nowej karcie
  139. N. Golash, P.R. Gogate, Degradation of dichlorvos containing wastewaters using sonochemical reactors, Ultrason. Sonochem. 19 (2012) 1051-1060. otwiera się w nowej karcie
  140. L.J. Xu, W. Chu, Po-Heng Lee, J. Wang, The mechanism study of efficient de- gradation of hydrophobicnonylphenol in solution by a chemical-free technology ofsonophotolysis, J. Hazard. Mater. 308 (2016) 386-393. otwiera się w nowej karcie
  141. X. Wang, Y. Zhang, Degradation of alachlor in aqueous solution by using hydro- dynamic cavitation, J. Hazard. Mater. 161 (2009) 202-207. otwiera się w nowej karcie
  142. K.K. Jyoti, A.B. Pandit, Effect of cavitation on chemical disinfection efficiency, Water Res. 38 (2004) 2249-2258. otwiera się w nowej karcie
  143. K.K. Jyoti, A.B. Pandit, Hybrid cavitation methods for water disinfection, Biochem. Eng. J. 14 (2003) 9-17. otwiera się w nowej karcie
  144. Y. Benito, S. Arrojo, G. Hauke, P. Vidal, Hydrodynamic cavitation as a low-cost AOP for wastewater treatment: preliminary results and a new design approach, WIT Trans. Ecol. Environ. 80 (2005) 495-503.
  145. Process, CAV-OX Cavitation Oxidation. Application analysis report, magnum water technology, inc. Risk Reduction Engg. Laboratory, Office of Research and Development, USEPA, Cincinnati, Ohio 45268, 1994. otwiera się w nowej karcie
  146. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydro- dynamic cavitation aided by external oxidants, Ultrason. Sonochem. 40 (2018) 969-979, http://dx.doi.org/10.1016/j.ultsonch.2017.08.032. otwiera się w nowej karcie
  147. M. Gągol et al. Chemical Engineering Journal 338 (2018) 599-627
  148. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic com- pounds emission profiles from hot road bitumens, Chemosphere 107 (2014) 23-30. otwiera się w nowej karcie
  149. E. Gilgenast, G. Boczkaj, A. Przyjazny, M. Kamiński, Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen, Anal. Bioanal. Chem. 401 (2011) 1059-1069. otwiera się w nowej karcie
  150. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxi- dation kinetics of postoxidative effluents using gas chromatography with pulsed flame photometric detector (GC-PFPD), Ind. Eng. Chem. Res. 49 (2010) 12654-12662. otwiera się w nowej karcie
  151. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 53 (2014) 1503-1514. otwiera się w nowej karcie
  152. F. Deygout, Volatile emissions from hot bitumen storage tanks, Environ. Prog. Sustainable Energy 30 (2011) 102-112. otwiera się w nowej karcie
  153. D.C. Trumbore, Estimates of air emissions from asphalt storage tanks and truck loading, Environ. Prog. 18 (1999) 250-259. otwiera się w nowej karcie
  154. A. Ventura, A. Jullien, P. Moneron, Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen, J. Environ. Eng. Sci. 6 (2007) 727-734. otwiera się w nowej karcie
  155. S.K. Chauhan, S. Sharma, A. Shukla, S. Gangopadhyay, Recent trends of the emis- sion characteristics from the road construction industry, Environ. Sci. Pollut. Res. 17 (2010) 1493-1501. otwiera się w nowej karcie
  156. E. Gasthauer, M. Maze, J.P. Marchand, J. Amouroux, Characterization of asphalt fume composition by GC/MS and effect of temperature, Fuel 87 (2008) 1428-1434. otwiera się w nowej karcie
  157. A. Jullien, V. Gaudefroy, A. Ventura, C. de la Roche, R. Paranhos, P. Moneron, Airborne emissions assessment of hot asphalt mixing methods and limitations, Road Mater. Pavement 11 (2010) 149-169. otwiera się w nowej karcie
  158. A.J. Kriech, L.V. Osborn, D.C. Trumbore, J.T. Kurek, H.L. Wissel, K.D. Rosinski, Evaluation of worker exposure to asphalt roofing fumes: Influence of work practices and materials, J. Occup. Environ. Hyg. 1 (2004) 88-98. otwiera się w nowej karcie
  159. D. Breuer, J.U. Hahn, D. Hober, C. Emmel, U. Musanke, R. Ruhl, A. Spickenheuer, M. Raulf-Heimsoth, R. Bramer, A. Seidel, B. Schilling, E. Heinze, B. Kendzia, B. Marczynski, P. Welge, J. Angerer, T. Bruning, B. Pesch, Air sampling and de- termination of vapours and aerosols of bitumen and polycyclic aromatic hydro- carbons in the Human Bitumen Study, Arch. Toxicol. 85 (2011) 11-20. otwiera się w nowej karcie
  160. I. Burstyn, P. Boffetta, T. Kauppinen, P. Heikkila, O. Svane, T. Partanen, I. Stucker, R. Frentzel-Beyme, W. Ahrens, H. Merzenich, D. Heederik, M. Hooiveld, S. Langard, B.G. Randem, B. Jarvholm, I. Bergdahl, J. Shaham, J. Ribak, H. Kromhout, Estimating exposures in the asphalt industry for an international epidemiological cohort study of cancer risk, Am. J. Ind. Med. 43 (2003) 3-17. otwiera się w nowej karcie
  161. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas Chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods 8 (2016) 3570-3577. otwiera się w nowej karcie
  162. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid micro- extraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. otwiera się w nowej karcie
  163. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. otwiera się w nowej karcie
  164. K.P. Mishra, P.R. Gogate, Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives, Sep. Purif. Technol. 75 (2010) 385-391. otwiera się w nowej karcie
  165. D.H. Bremner, S. Carlo, A.G. Chakinala, G. Cravotto, Mineralisation of 2, 4-di- chlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process, Ultrason. Sonochem. 15 (2008) 416-419. otwiera się w nowej karcie
  166. I. Grcic, M. Obradovic, D. Vujevic, N. Koprivanac, Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution: from an experimental design to the mechanistic modeling, Chem. Eng. J. 164 (2010) 196-207.
  167. S. Raut-Jadhav, V. Kumar Saharan, D. Pinjari, S. Sonawane, D. Saini, A. Pandit, Synergetic effect of combination of AOP's (hydrodynamic cavitation and H 2 O 2 ) on the degradation of neonicotinoid class of insecticide, J. Hazard. Mater. 261 (2013) 139-147. otwiera się w nowej karcie
  168. P.R. Gogate, P.N. Patil, Combined treatment technology based on synergism be- tween hydrodynamic cavitation and advanced oxidation processes, Ultrason. Sonochem. 25 (2015) 60-69. otwiera się w nowej karcie
  169. D. Drijvers, H. van Langenhove, L. Nguyen, T. Kim, L. Bray, Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene, Ultrason. Sonochem. 6 (1999) 115-121. otwiera się w nowej karcie
  170. A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater. 173 (2010) 517-522. otwiera się w nowej karcie
  171. Z. XiaoBin, Z. JiaKai, Q. LiMin, Z. XueJun, Calculation and verification of dyna- mical cavitation model for quasi-steady cavitating flow, Int. J. Mass Transfer 86 (2015) 294-301.
  172. N. Tran, P. Drogui, L. Nguyen, S.K. Brar, Optimization of sono-electrochemical oxidation of ibuprofen in wastewater, J. Environ. Chem. Eng. 3 (2015) 2637-2646. otwiera się w nowej karcie
  173. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Z. Blazˇeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem. 20 (2013) 1104-1112. otwiera się w nowej karcie
  174. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, M. Strazˇar, E. Heath, Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater, Ultrason. Sonochem. 21 (2014) 1213-1221. otwiera się w nowej karcie
  175. K.V. Padoleya, Virendra Kumar Saharanb, S.N. Mudliara, R.A. Pandeya, Aniruddha B. Panditb, Cavitationally induced biodegradability enhancement of a distillery wastewater, J. Hazard. Mater. 219-220 (2012) 69-74. otwiera się w nowej karcie
  176. A. Montusiewicz, S. Pasieczna-Patkowska, M. Lebiocka, A. Szaja, M. Szymańska- Chargot, Hydrodynamic cavitation of brewery spent grain diluted by wastewater, Chem. Eng. J. (http://dx.doi.org/10.1016/j.cej.2016.10.132). otwiera się w nowej karcie
  177. M.M. Gore, V.K. Saharan, D.V. Pinjari, P.V. Chavan, A.B. Pandit, Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques, Ultrason. Sonochem. 21 (2014) 1075-1082. otwiera się w nowej karcie
  178. V.K. Saharan, M.P. Badve, A.B. Pandit, Degradation of Reactive Red 120 dye using hydrodynamic cavitation, Chem. Eng. J. 178 (2011) 100-107. otwiera się w nowej karcie
  179. S. Raut-Jadhav, D. Saini, S. Sonawane, A. Pandit, Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution, Ultrason. Sonochem. 28 (2016) 283-293. otwiera się w nowej karcie
  180. B. Bethi, S.H. Sonawane, G.S. Rohit, C.R. Holkar, D.V. Pinjari, B.A. Bhanvase, A.B. Pandit, Investigation of TiO 2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP, Ultrason. Sonochem. 28 (2016) 150-160. otwiera się w nowej karcie
  181. A.A. Pradhan, P.R. Gogate, Removal of p-nitrophenol using hydrodynamic cavita- tion and Fenton chemistry at pilot scale operation, Chem. Eng. J. 156 (2010) 77-82. otwiera się w nowej karcie
  182. K. Rakness, G. Gordon, B. Langlais, W. Masschelein, N. Matsumoto, Y. Richard, C.M. Robson, I. Somiya, Guideline for measurement of ozone concentration in the process gas from an ozone generator, Ozone Sci. Eng. 18 (1996) 209-229. otwiera się w nowej karcie
  183. J.P. Tullis, Choking and supercavitating valves, J. Hydraul. Div. 97 (1971) 1931-1945. otwiera się w nowej karcie
  184. S. Bhattacharjee, Y.T. Shah, Mechanisms for advanced photooxidation of aqueous organic waste compounds, Rev. Chem. Eng. 14 (1998) 1-46. otwiera się w nowej karcie
  185. E.M. Aieta, K.M. Reagan, J.S. Lang, L. McReynolds, J. Kang, W.H. Glaze, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: Pilot-scale evaluations, J. Am. Water Works Assoc. 80 (1988) 64-72. otwiera się w nowej karcie
  186. W.H. Glaze, K.W. Kang, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies, J. Am. Water Works Assoc. 80 (1988) 57-63. otwiera się w nowej karcie
  187. P. Sykes, Guidelines to Mechanisms in Organic Chemistry, 5th ed., Orient-Longman, New-Delhi, 1982.
  188. M.V. Bagal, P.R. Gogate, Degradation of 2, 4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem. 20 (2013) 1226-1235. otwiera się w nowej karcie
  189. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem. 21 (2014) 1770-1777. otwiera się w nowej karcie
  190. Urs. Von Gunten, Ozonation of drinking water: Part I. Oxidation kinetics and pro- duct formation, Water Res. 37 (2003) 1443-1467.
  191. Urs. Von Gunten, Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Res. 37 (2003) 1469-1487.
  192. W. Gujer, Urs. Von Gunten, A stochastic model of an ozonation reactor, Water Res. 37 (2003) 1667-1677. otwiera się w nowej karcie
  193. A.L. Prajapat, P.R. Gogate, Intensified depolymerization of aqueous polyacrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ul- traviolet light and hydrogen peroxide, Ultrason. Sonochem. 31 (2016) 371-382. otwiera się w nowej karcie
  194. W.R. Haag, C.C.D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol. 26 (1992) 1005-1013. otwiera się w nowej karcie
  195. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  196. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various ad- vanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater. 149 (2007) 609-614. otwiera się w nowej karcie
  197. H. Zangeneh, A.A.L. Zinatizadeh, M. Feizy, A comparative study on the perfor- mance of different advanced oxidation processes (UV/O3/H2O2) treating linear alkyl benzene (LAB) production plant's wastewater, J. Ind. Eng. Chem. 20 (2014) 1453-1461. otwiera się w nowej karcie
  198. N.N. Mahamuni, G.A. Yusuf, Advanced oxidation processes (AOPs) involving ul- trasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem. 17 (2010) 990-1003. otwiera się w nowej karcie
  199. G. Boczkaj, A. Fernandes, P. Makoś, Study of different advanced oxidation processes for wastewater treatment from petroleum bitumen production at basic, Ind. Eng. Chem. Res. 56 (2017) 8806-8814. otwiera się w nowej karcie
  200. G. Boczkaj et al. Ultrasonics -Sonochemistry 40 (2018) 969-979 otwiera się w nowej karcie
  201. Y.T. Shah, A.B. Pandit, V.S. Moholkar, Cavitation Reaction Engineering, Springer Science & Business Media, New York, 1999. otwiera się w nowej karcie
  202. M. Gągol, G. Boczkaj, Przegląd metod wytwarzania kawitacji do degradacji zanieczyszczeń organicznych w środowisku wodnym (A review of methods of generation of cavitation for degradation of organic pollutants in aqueous medium), Aparatura Badawcza i Dydaktyczna 22 (2017) 62-71.
  203. P.R. Gogate, M.K. Abhijeet, A review of applications of cavitation in biochemical engineering/biotechnology, Biochem. Eng. J. 44 (1) (2009) 60-72. otwiera się w nowej karcie
  204. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  205. I. Grcic, M. Obradovic, D. Vujevic, N. Koprivanac, Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution: from an experimental design to the mechanistic modeling, Chem. Eng. J. 164 (2010) 196-207.
  206. P.R. Gogate, P.N. Patil, Combined treatment technology based on synergism be- tween hydrodynamic cavitation and advanced oxidation processes, Ultrason. Sonochem. 25 (2015) 60-69. otwiera się w nowej karcie
  207. A.A. Pradhan, P.R. Gogate, Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry, J. Hazard. Mater. 173 (2010) 517-522. otwiera się w nowej karcie
  208. D. Drijvers, H. van Langenhove, L. Nguyen, T. Kim, L. Bray, Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene, Ultrason. Sonochem. 6 (1999) 115-121. otwiera się w nowej karcie
  209. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Z. Blazeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem. 20 (2013) 1104-1112. otwiera się w nowej karcie
  210. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, M. Strazˇar, E. Heath, Shear-induced hydrodynamic cavitation as a tool for pharmaceutical
  211. M. Gągol et al. Ultrasonics -Sonochemistry 45 (2018) 257-266
  212. micropollutants removal from urban wastewater, Ultrason. Sonochem. 21 (2014) 1213-1221. otwiera się w nowej karcie
  213. J.G.D. Filho, M.P. Assis, A.I.B. Genovez, Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus, J. Hydro-environ. Res. 9 (2015) 259-267.
  214. M. Petkovšek, M. Mlakar, M. Levstek, M. Strazar, B. Širok, M. Dular, A novel ro- tation generator of hydrodynamic cavitation for waste-activated sludge disin- tegration, Ultrason. Sonochem. 26 (2015) 408-414. otwiera się w nowej karcie
  215. P.R. Gogate, A.B. Pandit, Hydrodynamic cavitation reactors: a state of the art re- view, Rev. Chem. Eng. 17 (2001) 1-85. otwiera się w nowej karcie
  216. S. Asgharzadehahmadi, A.A.A. Raman, R. Parthasarathy, B. Sajjadi, Sonochemical reactors: review on features, advantages and limitations, Renewable Sustainable Energy Rev. 63 (2016) 302-314. otwiera się w nowej karcie
  217. Y. Xiong, F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Mining Sci. Technol. 25 (2015) 523-529. otwiera się w nowej karcie
  218. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of ef- fluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants, Ultrason. Sonochem. 40 (2018) 969-979, http://dx.doi.org/10.1016/j.ultsonch.2017.08.032. otwiera się w nowej karcie
  219. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. otwiera się w nowej karcie
  220. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods 8 (2016) 3570-3577. otwiera się w nowej karcie
  221. G. Boczkaj, A. Przyjazny, M. Kamiński, Characteristics of volatile organic com- pounds emission profiles from hot road bitumens, Chemosphere 107 (2014) 23-30. otwiera się w nowej karcie
  222. E. Gilgenast, G. Boczkaj, A. Przyjazny, M. Kamiński, Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen, Anal. Bioanal. Chem. 401 (2011) 1059-1069. otwiera się w nowej karcie
  223. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxi- dation kinetics of postoxidative effluents using gas chromatography with pulsed flame photometric detector (GC-PFPD), Ind. Eng. Chem. Res. 49 (2010) 12654-12662. otwiera się w nowej karcie
  224. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 53 (2014) 1503-1514. otwiera się w nowej karcie
  225. F. Deygout, Volatile emissions from hot bitumen storage tanks, Environ. Prog. Sustainable Energy 30 (2011) 102-112. otwiera się w nowej karcie
  226. Z. Chen, X. Yu, X. Huang, S. Zhang, Prediction of reaction rate constants of hydroxyl radical with organic compounds, J. Chil. Chem. Soc. 59 (1) (2014) 2252-2259. otwiera się w nowej karcie
  227. E.S.C. Kwok, R. Atkinson, Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update, Atmos. Environ. 29 (1995) 1685-1695. otwiera się w nowej karcie
  228. L.P. Ramteke, P.R. Gogate, Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pre- treatment using Fenton/ultrasound based processes, J. Ind. Eng. Chem. 28 (2015) 247-260. otwiera się w nowej karcie
  229. S. Song, M. Xia, Z. He, H. Ying, B. Lu, J. Chen, Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis, J. Hazard. Mater. 144 (2007) 532-537. otwiera się w nowej karcie
  230. Z. He, S. Song, H. Ying, L. Xu, J. Chen, p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism, Ultrason. Sonochem. 14 (2007) 568-574. otwiera się w nowej karcie
  231. R.I. Olariu, B. Klotz, I. Barnesa, K.H. Becker, R. Mocanu, FT-IR study of the ring- retaining products from the reaction of OH radicals with phenol, o-, m-, and p- cresol, Atmos. Environ. 36 (2002) 3685-3697. otwiera się w nowej karcie
  232. A.G. Chakinala, D.H. Bremner, P.R. Gogate, K.C. Namkung, A.E. Burgess, Multivariate analysis of phenol mineralisation by combined hydrodynamic cavita- tion and heterogeneous advanced Fenton processing, Appl. Catal. B: Environ. 78 (2008) 11-18. otwiera się w nowej karcie
  233. P.Y. Jiang, Y. Katsumura, J.K. Ishigure, Y. YoshidaIb, Reduction potential of the nitrate radical in aqueous solution, Inorg. Chem. 31 (1992) 5135-5136. otwiera się w nowej karcie
  234. M.V. Bagal, P.R. Gogate, Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem. 20 (2013) 1226-1235. otwiera się w nowej karcie
  235. S. Bhattacharjee, Y.T. Shah, Mechanisms for advanced photooxidation of aqueous organic waste compounds, Rev. Chem. Eng. 14 (1998) 1-46. otwiera się w nowej karcie
  236. E.M. Aieta, K.M. Reagan, J.S. Lang, L. McReynolds, J. Kang, W.H. Glaze, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: Pilot-scale evaluations, J. Am. Water Works Assoc. 80 (1988) 64-72. otwiera się w nowej karcie
  237. P. Sykes, Guidelines to Mechanisms in Organic Chemistry, fifth ed., Orient- Longman, New-Delhi, 1982.
  238. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparison of various ad- vanced oxidation processes for the degradation of 4-chloro-2 nitrophenol, J. Hazard. Mater. 149 (2007) 609-614. otwiera się w nowej karcie
  239. H. Zangeneh, A.A.L. Zinatizadeh, M. Feizy, A comparative study on the perfor- mance of different advanced oxidation processes (UV/O 3 /H 2 O 2 ) treating linear alkyl benzene (LAB) production plant's wastewater, J. Ind. Eng. Chem. 20 (2014) 1453-1461. otwiera się w nowej karcie
  240. R. Munter, Advanced oxidation processes -current status and prospects, Proc. Estonian Acad. Sci. Chem. 50 (2001) 59-80. otwiera się w nowej karcie
  241. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem. 21 (2014) 1770-1777. otwiera się w nowej karcie
  242. M.M. Gore, V.K. Saharan, D.V. Pinjari, P.V. Chavan, A.B. Pandit, Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques, Ultrason. Sonochem. 21 (2014) 1075-1082. otwiera się w nowej karcie
  243. L.K. Weavers, M.R. Hoffmann, Sonolytic decomposition of ozone in aqueous solu- tion: mass transfer effects, Environ. Sci. Technol. 32 (1998) 3941-3947. otwiera się w nowej karcie
  244. F. Zaviska, P. Drogui, G. Mercier, J.F. Blais, Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels: Application á la dégradation des polluants réfractaires, Rev. Sci. Eau 22 (4) (2009) 535-564. otwiera się w nowej karcie
  245. H. Paillard, R. Brunet, M. Doré, Optimal conditions for applying an ozone-hydrogen peroxide oxidizing system, Water Res. 22 (1) (1988) 91-103. otwiera się w nowej karcie
  246. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Environ. Sci. Technol. 44 (2014) 2577-2641. otwiera się w nowej karcie
  247. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation -a review, Chem. Eng. J. 338 (2018) 599-627. otwiera się w nowej karcie
  248. M. Čehovin, A. Medic, J. Scheideler, J. Mielcke, A. Ried, B. Kompare, A.Z. Gotvajn, Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water, Ultrason. Sonochem. 37 (2017) 394-404. otwiera się w nowej karcie
  249. Y. Benito, S. Arrojo, G. Hauke, P. Vidal, Hydrodynamic cavitation as a low-cost AOP for wastewater treatment: preliminary results and a new design approach, WIT Trans. Ecol. Environ. 80 (2005) 495-503.
  250. M. Gągol et al. Ultrasonics -Sonochemistry 45 (2018) 257-266
  251. M. Gągol, G. Boczkaj, Przegląd metod wytwarzania kawitacji do degradacji zanieczyszczeń organicznych w środowisku wodnym, Aparatura Badawcza i Dydaktyczna 22 (2017) 62-71.
  252. S. Asgharzadehahmadi, A.A.A. Raman, R. Parthasarathy, B. Sajjadi, Sonochemical reactors: review on features, advantages and limitations, Renew. Sustain. Energy. Rev. 63 (2016) 302-314. otwiera się w nowej karcie
  253. N.N. Mahamuni, G.A. Yusuf, Advanced oxidation processes (AOPs) involving ul- trasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem. 17 (2010) 990-1003. otwiera się w nowej karcie
  254. A.K. Shriwas, P.R. Gogate, Ultrasonic degradation of methyl Parathion in aqueous solutions: intensification using additives and scale up aspects, Sep. Purif. Technol. 79 (2011) 1-7. otwiera się w nowej karcie
  255. B. Neppoliana, H. Junga, H. Choi, J.H. Leea, J.W. Kang, Sonolytic degradation of methyl tert-butyl ether: the role of coupled Fenton process and persulphate ion, Water Res. 36 (2002) 4699-4708. otwiera się w nowej karcie
  256. Y.L. Song, J.T. Li, Degradation of CI Direct Black 168 from aqueous solution by fly ash/H 2 O 2 combining ultrasound, Ultrason. Sonochem. 16 (2009) 440-444. otwiera się w nowej karcie
  257. K.K. Jyoti, A.B. Pandit, Water disinfection by acoustic and hydrodynamic cavita- tion, Biochem. Eng. J. 7 (2001) 201-212. otwiera się w nowej karcie
  258. A.G. Chakinala, D.H. Bremner, P.R. Gogate, K.C. Namkung, A.E. Burgess, Multivariate analysis of phenol mineralisation by combined hydrodynamic cavita- tion and heterogeneous advanced Fenton processing, Appl. Catal. B: Environ. 78 (2008) 11-18. otwiera się w nowej karcie
  259. D. Liu, E. Vorobiev, R. Savoire, J.L. Lanoisellé, Comparative study of ultrasound- assisted and conventional stirred dead-end microfiltration of grape pomace extracts, Ultrason. Sonochem. 20 (2013) 708-714. otwiera się w nowej karcie
  260. I. Worapun, K. Pianthong, P. Thaiyasuit, Optimization of biodiesel production from crude palm oil using ultrasonic irradiation assistance and response surface metho- dology, J. Chem. Technol. Biotechnol. 87 (2012) 189-197. otwiera się w nowej karcie
  261. A.S. Badday, A.Z. Abdullah, K.T. Lee, M.S. Khayoon, Intensification of biodiesel production via ultrasonic-assisted process: a critical review on fundamentals and recent development, Renew. Sustain. Energy. Rev. 16 (2012) 4574-4587. otwiera się w nowej karcie
  262. I. Lee, J. Han, The effects of waste-activated sludge pretreatment using hydro- dynamic cavitation for methane production, Ultrason. Sonochem. 20 (2013) 1450-1455. otwiera się w nowej karcie
  263. L. Csoka, S.N. Katekhaye, P.R. Gogate, Comparison of cavitational activity in dif- ferent configurations of sonochemical reactors using model reaction supported with theoretical simulations, Chem. Eng. J. 178 (2011) 384-390. otwiera się w nowej karcie
  264. V.S. Moholkar, P. Senthilkumar, A.B. Pandit, Hydrodynamic cavitation for sono- chemical effects, Ultrason. Sonochem. 6 (1999) 53-65. otwiera się w nowej karcie
  265. F. Parvizian, M. Rahimi, M. Faryadi, Macro-and micromixing in a novel sono- chemical reactor using high frequency ultrasound, Chem. Eng. Processing: Process Intensif. 5 (2011) 732-740. otwiera się w nowej karcie
  266. P.R. Gogate, S. Mujumdar, A.B. Pandit, Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction, Adv. Environ. Res. 7 (2003) 283-299. otwiera się w nowej karcie
  267. G. Boczkaj, M. Kamiński, A. Przyjazny, Process control and investigation of oxi- dation kinetics of postoxidative effluents using gas chromatography with pulsed flame photometric detection (GC-PFPD), Ind. Eng. Chem. Res. 49 (2010) 12654-12662. otwiera się w nowej karcie
  268. G. Boczkaj, A. Przyjazny, M. Kamiński, New procedures for control of industrial effluents treatment processes, Ind. Eng. Chem. Res. 53 (2014) 1503-1514. otwiera się w nowej karcie
  269. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents, Anal. Methods 8 (2016) 3570-3577. otwiera się w nowej karcie
  270. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid micro- extraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. otwiera się w nowej karcie
  271. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. otwiera się w nowej karcie
  272. M. Gągol et al. Chemical Engineering & Processing: Process Intensification 128 (2018) 103-113
  273. G. Boczkaj, M. Gągol, M. Klein, A. Przyjazny, Effective method of treatment of ef- fluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants, Ultrason. Sonochem. 40 (2018) 969-979, http://dx.doi.org/10.1016/j.ultsonch.2017.08.032. otwiera się w nowej karcie
  274. D.R. Reddy, G.K. Dinesh, S. Anandan, T. Sivasankar, Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO 2 , Chem. Eng. Process. 99 (2016) 10-18. otwiera się w nowej karcie
  275. R. Kidak, N.H. Ince, Catalysis of advanced oxidation reactions by ultrasound: a case study with phenol, J. Hazard. Mater. 146 (2007) 630-635. otwiera się w nowej karcie
  276. L.P. Ramteke, P.R. Gogate, Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pre- treatment using Fenton/ultrasound based processes, J. Ind. Eng. Chem. 28 (2015) 247-260. otwiera się w nowej karcie
  277. A. Hirvonen, T. Tuhkanen, P. Kalliokoski, Formation of chlorinated acetic acids during UV/H2O-oxidation of ground water contaminated with chlorinated ethy- lenes, Chemosphere 32 (1996) 1091-1102. otwiera się w nowej karcie
  278. M. Gągol, A. Przyjazny, G. Boczkaj, Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions, Ultrason. Sonochem. 45 (2018) 257-266. otwiera się w nowej karcie
  279. A.A. Pradhan, P.R. Gogate, Removal of p-nitrophenol using hydrodynamic cavita- tion and Fenton chemistry at pilot scale operation, Chem. Eng. J. 156 (2010) 77-82. otwiera się w nowej karcie
  280. M.V. Bagal, P.R. Gogate, Degradation of 2, 4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes, Ultrason. Sonochem. 20 (2013) 1226-1235. otwiera się w nowej karcie
  281. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem. 21 (2014) 1770-1777. otwiera się w nowej karcie
  282. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J. 320 (2017) 608-633. otwiera się w nowej karcie
  283. J.J. Wu, M. Muruganandham, S.H. Chen, Degradation of DMSO by ozone-based advanced oxidation processes, J. Hazard. Mater. 149 (2007) 218-225. otwiera się w nowej karcie
  284. M.A. Alsheyab, A.H. Munoz, Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H 2 O 2 /O 3 ), Desalination 194 (2006) 121-126. otwiera się w nowej karcie
  285. J. Staehelin, H. Jurg, Decomposition of ozone in water: rate of initiation by hy- droxide ions and hydrogen peroxide, Environ. Sci. Technol. 16 (1982) 676-681. otwiera się w nowej karcie
  286. J.G.D. Filho, M.P. Assis, A.I.B. Genovez, Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus, J. Hydraul. Res. 9 (2015) 259-267.
  287. M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation -a review, Chem. Eng. J. 338 (2018) 599-627. otwiera się w nowej karcie
  288. G. Boczkaj, P. Makoś, A. Przyjazny, Application of dispersive liquid-liquid micro- extraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen, J. Sep. Sci. 39 (2016) 2604-2615. otwiera się w nowej karcie
  289. G. Boczkaj, P. Makoś, A. Fernandes, A. Przyjazny, New procedure for the control of the treatment of industrial effluents to remove volatile organosulfur compounds, J. Sep. Sci. 39 (2016) 3946-3956. otwiera się w nowej karcie
  290. L.J. Xu, W. Chu, N. Graham, Sonophotolytic degradation of phthalate acid esters in water and wastewater: influence of compound properties and degradation me- chanisms, J. Hazard. Mater. 288 (2015) 43-50. otwiera się w nowej karcie
  291. K.V. Padoley, S.N. Virendra Kumar Saharan, R.A. Mudliar, Aniruddha B. Pandey, Pandit, Cavitationally induced biodegradability enhancement of a distillery was- tewater, J. Hazard. Mater. 219 (2012) 69-74. otwiera się w nowej karcie
  292. M. Gągol et al. Chemical Engineering & Processing: Process Intensification 128 (2018) 103-113
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 379 razy

Publikacje, które mogą cię zainteresować

Meta Tagi