Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0,1].
Opis
The presented dataset is a result of the convergence analysis of the Mickens-type, nonlinear, finite-difference discretization of a generalized Burgers–Huxley partial differential equation.
The generalized Burgers–Huxley equation is a diffusive partial differential equation with nonlinear advection and diffusion. The boundary problem for this equation possesses travelling-wave solutions that are positive and bounded. Moreover, such solutions are spatially monotone at each instant of time, and temporally monotone at each spatial point. Unfortunately, only a few travelling-wave solutions of such model are known in exact form, therefore, the construction of a suitable numerical method is highly desirable.
The complete convergence analysis of the constructed nonstandard difference scheme is available in the paper: On the convergence of a finite-difference discretization a la Mickens of the generalized Burgers–Huxley equation (2014) Vol. 20, No. 10, 1444–1451, http://dx.doi.org/10.1080/10236198.2014.936319.
We provide nonstandard approximation of the travelling wave solution bounded within [0,1]. The dataset consists of text files (.txt) with simulation results which contain the maximum-norm errors. Results are obtained for couple of sets of model parameters: α, γ, p and the space interval [-20,20]. Time interval is set to be [0,20]. Each file contains six results for different combination of time and space steps which satisfy the convergence conditions derived in the above paper.
- α = 1, γ = 0.8, p = 2 – [0,1]solution1.txt
- α = 1, γ = 0.7, p = 2 – [0,1]solution2.txt
- α = 1, γ = 0.6, p = 2 – [0,1]solution3.txt
- α = 1, γ = 0.8, p = 1 – [0,1]solution4.txt
- α = 1, γ = 0.7, p = 1 – [0,1]solution5.txt
- α = 1, γ = 0.6, p = 1 – [0,1]solution6.txt
- α = 0.8, γ = 0.8, p = 1 – [0,1]solution7.txt
- α = 0.6, γ = 0.8, p = 1 – [0,1]solution8.txt
- α = 0.8, γ = 0.8, p = 2 – [0,1]solution9.txt
- α = 0.6, γ = 0.8, p = 2 – [0,1]solution10.txt
Plik z danymi badawczymi
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
gdzie pojedyncza część pliku jest wielkości 512 MBPrzykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
Informacje szczegółowe o pliku
- Licencja:
-
otwiera się w nowej karcieCC BYUznanie autorstwa
Informacje szczegółowe
- Rok publikacji:
- 2020
- Data zatwierdzenia:
- 2020-12-17
- Język danych badawczych:
- angielski
- Dyscypliny:
-
- matematyka (Dziedzina nauk ścisłych i przyrodniczych)
- DOI:
- Identyfikator DOI 10.34808/3mfc-vs29 otwiera się w nowej karcie
- Weryfikacja:
- Politechnika Gdańska
Słowa kluczowe
Powiązane zasoby
- publikacja On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation
- dane badawcze Database of the convergence analysis results of the nonstandard approximation of the generalized Burgers–Huxley equation for the solution bounded within [0, γ^(1/p)].
Cytuj jako
Autorzy
wyświetlono 220 razy