Elgold partial: Scientific papers' abstracts - Open Research Data - MOST Wiedzy

Wyszukiwarka

Elgold partial: Scientific papers' abstracts

Opis

The dataset contains 87 Scientific papers' abstracts in English randomly chosen from the folowing scientific disciplines: Biomedicine, Life Sciences, Mathematics, Medicine, Science, Humanities, Social Science.

In each text, the named entities are marked. Each name entity is linked to the corresponding Wikipedia if possible. All entities were manually verified by at least three people, which makes the dataset a high-quality gold standard for the evaluation of named entity recognition and linking algorithms.

Each marked entity in the dataset is assigned to one of the following classes:
    EVENT - Named hurricanes, battles, wars, sports events, etc.
    FAC - Buildings, airports, highways, bridges, etc.
    GPE - Countries, cities, states
    LANGUAGE - Any named language
    LAW - Named documents made into laws.
    LOC - Non-GPE locations, mountain ranges, bodies of water
    NORP - Nationalities or religious or political groups
    ORG - Companies, agencies, institutions, etc.
    PERSON - People, including fictional
    PRODUCT - Objects, vehicles, foods, etc. (not services)
    WORK_OF_ART - Titles of books, songs, etc.
    DISEASE - Names of diseases
    SUBSTANCE - Natural substances
    SPECIE - Species names of animals, plants, viruses, etc.

The marked entities are embedded directly in the textual files using the following syntax:

    {{mention content|entity class|Wikipedia target}}

The "mention content" is a fragment of the textual file that was marked, "entity class" is the named entity class, and "Wikipedia target" is the normalized name of the English Wikipedia page describing the entity. If the entity cannot be linked sensibly to any article the target is empty but the second pipe (|) is preserved. 

There is a guarantee that the double braces in the texts exist only as marked entity syntax. It allows to process the files using simple regular expression: {{[^{}]*}}

Ilustracja publikacji

The distribution of datast NER classes, split into separate categories. The first number shows the quantity of linked entities, the second all marked mentions.

Plik z danymi badawczymi

elgold-partial6.zip
70.7 kB, S3 ETag 79bfb02cd0bcb3e73981353a26310cec-1, pobrań: 48
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik elgold-partial6.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa

Informacje szczegółowe

Rok publikacji:
2024
Data zatwierdzenia:
2024-05-31
Data wytworzenia:
2024
Język danych badawczych:
angielski
Dyscypliny:
  • informatyka techniczna i telekomunikacja (Dziedzina nauk inżynieryjno-technicznych)
DOI:
Identyfikator DOI 10.34808/pncq-fj33 otwiera się w nowej karcie
Seria:
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 82 razy