Filtry
wszystkich: 5313
wybranych: 1277
-
Katalog
- Publikacje 3761 wyników po odfiltrowaniu
- Czasopisma 72 wyników po odfiltrowaniu
- Konferencje 7 wyników po odfiltrowaniu
- Osoby 61 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Zespoły Badawcze 1 wyników po odfiltrowaniu
- Kursy Online 62 wyników po odfiltrowaniu
- Wydarzenia 1 wyników po odfiltrowaniu
- Dane Badawcze 1343 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: FLUID FLOW MEASUREMENT
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 20 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 25 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 500 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 100 mm piston diameter, 32 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 100 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 12 mm piston rod diameter and 200 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 32 mm piston diameter, 14 mm piston rod diameter and 50 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Simulation of a linear pneumatic actuator with 63 mm piston diameter, 25 mm piston rod diameter and 25 mm stroke
Dane BadawczeThe aim of the simulation was to determine the dynamics of linear pneumatic actuators with different sizes and flow properties. The simulation used the actuator dynamics model as described in [1] and the St Venant - Wantzel's mass flow rate model. The simulation experiment was to calculate the pressure changes in both chambers of the actuator as well...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.5
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Dane BadawczeApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...