Filtry
wszystkich: 239
wybranych: 19
Wyniki wyszukiwania dla: structural mechanics
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 60mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture SEM investigation (plate thicnkness 30mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 30mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - Charpy impact test reslut in vary tempetatures
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 40mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - tensile test record
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding - fracture documentation for CTOD test (plate thicnkness 50mm), a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - 3D fracture scan
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 40 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 60 mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 50mm) - CMOD - force record, a0/W = 0.6
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...
-
EH36 steel for shipbuilding (plate thicnkness 30 mm) - CMOD - force record, a0/W = 0.5
Dane BadawczeThe basic method of ductility designation of structural steels is the Charpy impact test. The test consists of a single strike of the specimen using a Charpy pendulum. Its result is the value of work necessary to break a specimen at a test temperature. Despite its many advantages, such as its short implementation time and low costs, it has its disadvantages,...