A CNN based coronavirus disease prediction system for chest X-rays - Publikacja - MOST Wiedzy

Wyszukiwarka

A CNN based coronavirus disease prediction system for chest X-rays

Abstrakt

Coronavirus disease (COVID-19) proliferated globally in early 2020, causing existential dread in the whole world. Radiography is crucial in the clinical staging and diagnosis of COVID-19 and offers high potential to improve healthcare plans for tackling the pandemic. However high variations in infection characteristics and low contrast between normal and infected regions pose great challenges in preparing radiological reports. To address these challenges, this study presents CODISCCNN (CNN based Coronavirus DIsease Prediction System for Chest X-rays) that can automatically extract the features from chest X-ray images for the disease prediction. However, to get the infected region of X-ray, edges of the images are detected by applying image preprocessing. Furthermore, to attenuate the shortage of labeled datasets data augmentation has been adapted. Extensive experiments have been performed to classify X-ray images into two classes (Normal and COVID), three classes (Normal, COVID, and Virus Bacteria), and four classes (Normal, COVID, and Virus Bacteria, and Virus Pneumonia) with the accuracy of 97%, 89%, and 84% respectively. The proposed CNN-based model outperforms many cutting-edge classifcation models and boosts state-of-the-art performance.

Cytowania

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Autorzy (7)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Ambient Intelligence and Humanized Computing nr 14, strony 13179 - 13193,
ISSN: 1868-5137
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Hafeez U., Umer M., Hameed A., Mustafa H., Sohaib A., Nappi M., Madni H.: A CNN based coronavirus disease prediction system for chest X-rays// Journal of Ambient Intelligence and Humanized Computing -Vol. 14, (2023), s.13179-13193
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s12652-022-03775-3
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 744 razy

Publikacje, które mogą cię zainteresować

Meta Tagi