Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail - Publikacja - MOST Wiedzy

Wyszukiwarka

Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail

Abstrakt

In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models are preferred. In this manuscript, an effective Bi-GRU is proposed for accurate sales forecasting related to E-commerce companies. Initially, retail sales data are acquired from two benchmark online datasets: Rossmann dataset and Walmart dataset. From the acquired datasets, the unreliable samples are eliminated by interpolating missing data, outlier’s removal, normalization, and de-normalization. Then, feature engineering is carried out by implementing the Adaptive Particle Swarm Optimization (APSO) algorithm, Recursive Feature Elimination (RFE) technique, and Minimum Redundancy Maximum Relevance (MRMR) technique. Followed by that, the optimized active features from feature engineering are given to the Bi-Directional Gated Recurrent Unit (Bi-GRU) model for precise retail sales forecasting. From the result analysis, it is seen that the proposed Bi-GRU model achieves higher results in terms of an R2 value of 0.98 and 0.99, a Mean Absolute Error (MAE) of 0.05 and 0.07, and a Mean Square Error (MSE) of 0.04 and 0.03 on the Rossmann and Walmart datasets. The proposed method supports the retail sales forecasting by achieving superior results over the conventional models.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (5)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Telecom nr 5, strony 537 - 555,
ISSN: 2673-4001
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Mogarala Guruvaya A., Kollu A., Bidare Divakarachari P., Falkowski-Gilski P., Dwaraka Praveena H.: Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail// Telecom -Vol. 5,iss. 3 (2024), s.537-555
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/telecom5030028
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 51 razy

Publikacje, które mogą cię zainteresować

Meta Tagi