Bimodal classification of English allophones employing acoustic speech signal and facial motion capture - Publikacja - MOST Wiedzy

Wyszukiwarka

Bimodal classification of English allophones employing acoustic speech signal and facial motion capture

Abstrakt

A method for automatic transcription of English speech into International Phonetic Alphabet (IPA) system is developed and studied. The principal objective of the study is to evaluate to what extent the visual data related to lip reading can enhance recognition accuracy of the transcription of English consonantal and vocalic allophones. To this end, motion capture markers were placed on the faces of seven speakers to obtain lip tracking data synchronized with the audio signal. 32 markers were used, 20 of which were placed on the speaker's inner lips and 4 on a special cap, which served as the point of reference and stabilized the FMC image while post-processing. Speech samples were simultaneously recorded as a list of approximately 300 words in which all English consonantal and vocalic allophones were represented. Different parameterization strategies were tested and the accuracy of vocalic segments

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Journal of the Acoustical Society of America nr 144, wydanie 3, strony 1801 - 1802,
ISSN: 0001-4966
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Czyżewski A., Zaporowski S., Kostek B.: Bimodal classification of English allophones employing acoustic speech signal and facial motion capture// Journal of the Acoustical Society of America. -Vol. 144, iss. 3 (2018), s.1801-1802
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1121/1.5067951
Weryfikacja:
Politechnika Gdańska

wyświetlono 140 razy

Publikacje, które mogą cię zainteresować

Meta Tagi