Breast MRI segmentation by deep learning: key gaps and challenges - Publikacja - MOST Wiedzy

Wyszukiwarka

Breast MRI segmentation by deep learning: key gaps and challenges

Abstrakt

Breast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature on deep learning based on input modalities, use of labeled/unlabeled data during training, and different architectures. Additionally, it describes more complex frameworks structured using hierarchical, ensemble, or fused learning. Then, MRI processing approaches, key aspects of convolutional neural networks, and key gaps and challenges are focused. The need for large breast MRI datasets with accurate annotations and the generalization of the proposed structures to diverse and comprehensive datasets are among the gaps.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 11, strony 117935 - 117946,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Askaripour K., Żak A.: Breast MRI segmentation by deep learning: key gaps and challenges// IEEE Access -Vol. 11, (2023), s.117935-117946
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2023.3321272
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 85 razy

Publikacje, które mogą cię zainteresować

Meta Tagi