Wyniki wyszukiwania dla: CNNS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: CNNS

Wyniki wyszukiwania dla: CNNS

  • Fabrication of FeTCPP@CNNS for Efficient Photocatalytic Performance of p-Nitrophenol under Visible Light

    Publikacja
    • S. Li
    • Y. Guo
    • L. Liu
    • J. Wang
    • L. Zhang
    • W. Shi
    • M. Aleksandrzak
    • X. Chen
    • J. Liu

    - Catalysts - Rok 2023

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Explainable machine learning for diffraction patterns

    Publikacja
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Rok 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Pełny tekst do pobrania w portalu

  • Aleksandra Karpus dr inż.

    Aleksandra Karpus jest absolwentką Matematyki Stosowanej na Wydziale Fizyki Technicznej i Matematyki Stosowanej oraz Informatyki na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. W latach 2011-2014 pracowała z danymi w przemyśle, wykorzystując bazy danych Oracle. Od 2014 roku jest zawodowo związana z Politechniką Gdańską, obecnie jest zatrudniona na stanowisku adiunkta naukowo-dydaktycznego w Katedrze...

  • Speech Analytics Based on Machine Learning

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features

    Nematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...

    Pełny tekst do pobrania w portalu

  • MobileNet family tailored for Raspberry Pi

    With the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...

    Pełny tekst do pobrania w portalu

  • Generation-recombination and 1/f noise in carbon nanotube networks

    Publikacja
    • A. Rehman
    • A. Krajewska
    • B. Stonio
    • K. Pavlov
    • G. Cywinski
    • D. Lioubtchenko
    • W. Knap
    • S. Rumyantsev
    • J. Smulko

    - APPLIED PHYSICS LETTERS - Rok 2021

    The low-frequency noise is of special interest for carbon nanotubes devices, which are building blocks for a variety of sensors, including radio frequency and terahertz detectors. We studied noise in as-fabricated and aged carbon nanotube networks (CNNs) field-effect transistors. Contrary to the majority of previous publications, as-fabricated devices demonstrated the superposition of generation-recombination (GR) and 1/f noise...

    Pełny tekst do pobrania w portalu

  • System for monitoring road slippery based on CCTV cameras and convolutional neural networks

    Publikacja

    The slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...

    Pełny tekst do pobrania w portalu

  • Neural networks and deep learning

    Publikacja

    - Rok 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification

    The article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...

    Pełny tekst do pobrania w portalu

  • Investigating Feature Spaces for Isolated Word Recognition

    Publikacja
    • P. Treigys
    • G. Korvel
    • G. Tamulevicius
    • J. Bernataviciene
    • B. Kostek

    - Rok 2020

    The study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Musical Instrument Identification Using Deep Learning Approach

    Publikacja

    The work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...

    Pełny tekst do pobrania w portalu

  • A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention

    Publikacja

    - IEEE Internet of Things Journal - Rok 2019

    Together with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...

    Pełny tekst do pobrania w portalu

  • Investigating Feature Spaces for Isolated Word Recognition

    Publikacja

    - Rok 2018

    Much attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...

  • Detecting Lombard Speech Using Deep Learning Approach

    Publikacja
    • K. Kąkol
    • G. Korvel
    • G. Tamulevicius
    • B. Kostek

    - SENSORS - Rok 2023

    Robust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...

    Pełny tekst do pobrania w portalu

  • Platelet RNA Sequencing Data Through the Lens of Machine Learning

    Publikacja

    - Cancers - Rok 2023

    Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...

    Pełny tekst do pobrania w portalu

  • How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

    Publikacja
    • T. Kocejko
    • N. Matuszkiewicz
    • J. Kwiatkowski
    • P. Durawa
    • A. Madajczak

    - SENSORS - Rok 2024

    This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...

    Pełny tekst do pobrania w portalu

  • Robust and Efficient Machine Learning Algorithms for Visual Recognition

    Publikacja

    - Rok 2022

    In visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...

    Pełny tekst do pobrania w portalu

  • DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION

    Publikacja
    • M. Maj
    • J. Borkowski
    • J. Wasilewski
    • S. Hrynowiecka
    • A. Kastrau
    • M. Liksza
    • P. Jasik
    • M. Treder

    - Rok 2022

    Objective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets

    Artificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...

    Pełny tekst do pobrania w portalu

  • Vehicle detector training with minimal supervision

    Publikacja

    Recently many efficient object detectors based on convolutional neural networks (CNN) have been developed and they achieved impressive performance on many computer vision tasks. However, in order to achieve practical results, CNNs require really large annotated datasets for training. While many such databases are available, many of them can only be used for research purposes. Also some problems exist where such datasets are not...

  • Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier

    Publikacja

    - Healthcare - Rok 2023

    In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....

    Pełny tekst do pobrania w portalu

  • Breast MRI segmentation by deep learning: key gaps and challenges

    Publikacja

    Breast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...

    Pełny tekst do pobrania w portalu