Predictions of cervical cancer identification by photonic method combined with machine learning - Publikacja - MOST Wiedzy

Wyszukiwarka

Predictions of cervical cancer identification by photonic method combined with machine learning

Abstrakt

Cervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors in the early diagnosis stage of cervical cancer. We demonstrate the preliminary research on cervical cancer assessment utilizing an optical sensor and a prediction algorithm. Since each matter is characterized by refractive index, measuring its value and detecting changes give information about the state of the tissue. The optical measurements provided datasets for training and validating the analyzing software. We present data preprocessing, machine learning results utilizing four algorithms (Random Forest, eXtreme Gradient Boosting, Naïve Bayes, Convolutional Neural Networks) and assessment of their performance for classification of tissue as healthy or sick. Our solution allows for rapid sample measurement and automatic classification of the results constituting a potential support tool for doctors.

Cytowania

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Autorzy (6)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 12,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Kruczkowski M., Drabik-Kruczkowska A., Marciniak A., Tarczewska M., Kosowska M., Szczerska M.: Predictions of cervical cancer identification by photonic method combined with machine learning// Scientific Reports -Vol. 12, (2022), s.3762-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-022-07723-1
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 134 razy

Publikacje, które mogą cię zainteresować

Meta Tagi