Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification - Publikacja - MOST Wiedzy

Wyszukiwarka

Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification

Abstrakt

Liquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community on which methods are the most effective or how to process the data. To circumvent this, we performed a large-scale study using various machine-learning techniques. First, we took a closer look at existing datasets and filtered out some patients to assert data collection quality. The final data collection included platelet RNA samples acquired from 1397 cancer patients (17 types of cancer) and 354 asymptomatic, presumed healthy, donors. Then, we assessed an array of different machine-learning models and techniques (e.g., feature selection of RNA transcripts) in pan-cancer detection and multiclass classification. Our results show that simple logistic regression performs the best, reaching a 68% cancer detection rate at a 99% specificity level, and multiclass classification accuracy of 79.38% when distinguishing between five cancer types. In summary, by revisiting classical machine-learning models, we have exceeded the previously used method by 5% and 9.65% in cancer detection and multiclass classification, respectively. To ease further research, we open-source our code and data processing pipelines (https://gitlab.com/jopekmaksym/improving-platelet-rna-based-diagnostics), which we hope will serve the community as a strong baseline.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Molecular Oncology nr 18, strony 2743 - 2754,
ISSN: 1574-7891
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Jopek M. A., Pastuszak K., Sieczczyński M., Cygert S., Żaczek A. J., Rondina M. T., Supernat A.: Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification// Molecular Oncology -Vol. 18,iss. 11 (2024), s.2743-2754
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1002/1878-0261.13689
Źródła finansowania:
  • Spoza PG, koszty OA pokryte przez współautorów
Weryfikacja:
Politechnika Gdańska

wyświetlono 65 razy

Publikacje, które mogą cię zainteresować

Meta Tagi