Predictions of cervical cancer identification by photonic method combined with machine learning - Publication - Bridge of Knowledge

Search

Predictions of cervical cancer identification by photonic method combined with machine learning

Abstract

Cervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors in the early diagnosis stage of cervical cancer. We demonstrate the preliminary research on cervical cancer assessment utilizing an optical sensor and a prediction algorithm. Since each matter is characterized by refractive index, measuring its value and detecting changes give information about the state of the tissue. The optical measurements provided datasets for training and validating the analyzing software. We present data preprocessing, machine learning results utilizing four algorithms (Random Forest, eXtreme Gradient Boosting, Naïve Bayes, Convolutional Neural Networks) and assessment of their performance for classification of tissue as healthy or sick. Our solution allows for rapid sample measurement and automatic classification of the results constituting a potential support tool for doctors.

Citations

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 2 9

    Scopus

Authors (6)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 12,
ISSN: 2045-2322
Language:
English
Publication year:
2022
Bibliographic description:
Kruczkowski M., Drabik-Kruczkowska A., Marciniak A., Tarczewska M., Kosowska M., Szczerska M.: Predictions of cervical cancer identification by photonic method combined with machine learning// Scientific Reports -Vol. 12, (2022), s.3762-
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-022-07723-1
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 134 times

Recommended for you

Meta Tags