Machine learning applied to acoustic-based road traffic monitoring - Publikacja - MOST Wiedzy

Wyszukiwarka

Machine learning applied to acoustic-based road traffic monitoring

Abstrakt

The motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic detector are briefly described. Principles of several machine learning algorithms, data acquisition process, information about the dataset built are explained. The study is conducted using the audio recordings prepared by the authors, registered in several locations and different meteorological conditions of the road surface. For each recording containing a single-vehicle passage, a vector of 67 parameters extracted from the audio signal is calculated. Fisher Linear Discriminant Analysis and Regression Analysis, the fastest among algorithms employed, return the following values of accuracy: 0.968 and 0.978, precision: 0.919 and 0.853, recall: 0.882 and 0.974, and F-score: 0.898 and 0.868 for vehicle type classification. In the case of the road pavement conditions, the obtained metrics are as follows: accuracy of 0.933, precision of 0.898, recall of 0.9, and F-score of 0.884.

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Marciniuk K., Kostek B.: Machine learning applied to acoustic-based road traffic monitoring// / : , 2022,
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 122 razy

Publikacje, które mogą cię zainteresować

Meta Tagi