Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
Abstrakt
Due to the exponential rise of mobile technology, a slew of new mobile security concerns has surfaced recently. To address the hazards connected with malware, many approaches have been developed. Signature-based detection is the most widely used approach for detecting Android malware. This approach has the disadvantage of being unable to identify unknown malware. As a result of this issue, machine learning (ML) for detecting malware apps was created. Conventional ML methods are concerned with increasing classification accuracy. However, the standard classification method performs poorly in recognizing malware applications due to the unbalanced real-world datasets. In this study, an empirical analysis of the detection performance of ML methods in the presence of class imbalance is conducted. Specifically, eleven (11) ML methods with diverse computational complexities were investigated. Also, the synthetic minority oversampling technique (SMOTE) and random undersampling (RUS) are deployed to address the class imbalance in the Android malware datasets. The experimented ML methods are tested using the Malgenome and Drebin Android malware datasets that contain features gathered from both static and dynamic malware approaches. According to the experimental findings, the performance of each experimented ML method varies across the datasets. Moreover, the presence of class imbalance deteriorated the performance of the ML methods as their performances were amplified with the deployment of data sampling methods (SMOTE and RUS) used to alleviate the class imbalance problem. Besides, ML models with SMOTE technique are superior to ML models based on the RUS method. It is therefore recommended to address the inherent class imbalance problem in Android Malware detection
Cytowania
-
3
CrossRef
-
0
Web of Science
-
8
Scopus
Autorzy (8)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3991/ijim.v16i10.29687
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
International Journal of Interactive Mobile Technologies
nr 16,
strony 140 - 162,
ISSN: - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Akintola A. G., Balogun A. O., Mojeed H., Usman-Hamza F., Salihu S. A., Adewole K. S., Balogun G. B., Sadiku P. O.: Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection// International Journal of Interactive Mobile Technologies -Vol. 16,iss. 10 (2022), s.140-162
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3991/ijim.v16i10.29687
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 276 razy
Publikacje, które mogą cię zainteresować
Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection
- A. G. Akintola,
- A. O. Balogun,
- L. F. Capretz
- + 7 autorów
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
- V. Bulavas,
- V. Marcinkevičius,
- J. Rumiński