Robustness in Compressed Neural Networks for Object Detection - Publikacja - MOST Wiedzy

Wyszukiwarka

Robustness in Compressed Neural Networks for Object Detection

Abstrakt

Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving setting, which is considered in this work. It was shown in the paper that the sensitivity of compressed models to different distortion types is nuanced, and some of the corruptions are heavily impacted by the compression methods (i.e., additive noise), while others (blur effect) are only slightly affected. A common way to improve the robustness of models is to use data augmentation, which was confirmed to positively affect models' robustness, also for highly compressed models. It was further shown that while data imbalance methods brought only a slight increase in accuracy for the baseline model (without compression), the impact was more striking at higher compression rates for the structured pruning. Finally, methods for handling data imbalance brought a significant improvement of the pruned models' worst-detected class accuracy.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 37 razy
Wersja publikacji
Accepted albo Published Version
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/IJCNN52387.2021.9533773
Licencja
Copyright (2021 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Cygert S., Czyżewski A.: Robustness in Compressed Neural Networks for Object Detection// / : , 2021,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/ijcnn52387.2021.9533773
Weryfikacja:
Politechnika Gdańska

wyświetlono 136 razy

Publikacje, które mogą cię zainteresować

Meta Tagi