Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition - Publikacja - MOST Wiedzy

Wyszukiwarka

Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

Abstrakt

Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural network (DNN) architecture proposed in this study intends to bring a different approach to the predictive maintenance domain. There is an input layer in this architecture, a Long-Short term memory (LSTM) layer, a dropout layer (DO) followed by an LSTM layer, a hidden layer, and an output layer. The number of epochs used in the architecture and the batch size was determined using the Genetic Algorithm (GA). The activation function used after the output layer, DO ratio, and optimization algorithm optimizes loss function determined by using grid search (GS). This approach brings a different perspective to the literature for finding optimum parameters of LSTM. The neural network and hyperparameter optimization approach proposed in this study performs much better than existent studies regarding LSTM network usage for predictive maintenance purposes

Cytowania

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Gazi University Journal of Science nr 35, strony 1200 - 1210,
ISSN: 1303-9709
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Erpolat Tasabat S., Aydin O.: Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition// Gazi University Journal of Science -Vol. 35,iss. 3 (2022), s.1200-1210
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.35378/gujs.937169
Weryfikacja:
Politechnika Gdańska

wyświetlono 134 razy

Publikacje, które mogą cię zainteresować

Meta Tagi