A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere - Publication - Bridge of Knowledge

Search

A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere

Abstract

A reduction of bismuth oxide in hydrogen atmosphere was investigated. The reaction was performed with a material in various structural forms: powder: with micrometric grains, powder with nanometric grains and powder pressed into pellets. The process was performed in both isothermal and non-isothermal conditions. An activation energy of the reaction calculated with Friedman method was found to be about 85 kJ/mol for the reduction of both micrometric powder and pellets. A model fitting analysis based on Coats-Redfern method suggests, that the reaction is limited by a diffusion of gaseous reactants, what is consistent with a structural analysis. An effect of liquid bismuth evaporation was noticed at the beginning of the process. This phenomenon was much stronger in the case of reduction of nanometric powder. The activation energy was estimated to be about 30 – 50 kJ/mol. The reaction could have been performed at lower temperature.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 96 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
THERMOCHIMICA ACTA no. 669, pages 99 - 108,
ISSN: 0040-6031
Language:
English
Publication year:
2018
Bibliographic description:
Trawiński B. J., Bochentyn B., Kusz B.: A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere// THERMOCHIMICA ACTA. -Vol. 669, (2018), s.99-108
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.tca.2018.09.010
Bibliography: test
  1. J. C. Juarez, R. Morales, Reduction Kinetics of Ag 2 MoO 4 by Hydrogen, Metall. Mater. Trans. B 39B (2008) 738-745 doi:10.1007/s11663-008-9173-3 open in new tab
  2. M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, J. Nanosci. Nanotechnol. 10(6) (2010), 3739- 3758 doi:10.1166/jnn.2010.2939 open in new tab
  3. P. Pourghahramani, E. Forssberg, Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods, Termochim. Acta 454 (2007) 69-77 doi:10.1016/j.tca.2006.12.023 open in new tab
  4. K. Piotrowski et al., Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrog. Energy 30 (2005) 1543-1554 doi:10.1016/j.ijhydene.2004.10.013 open in new tab
  5. H. Chen et al., Reduction of hematite (Fe 2 O 3 ) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study, Powder Technol. 316 (2017) 410- 420 doi:10.1016/j.powtec.2017.02.067 open in new tab
  6. B. Janković et al., The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method, Thermochim. Acta 456 (2007) 48-55 doi:10.1016/j.tca.2007.01.033 open in new tab
  7. J. Szekely, J. W. Evans, Studies in gas-solid reactions: Part II. An experimental study of nickel oxide reduction with hydrogen, Metall. Trans. 2 (1971) 1699-1710 doi:10.1007/BF02913896 open in new tab
  8. K. V. Manukyan et al., Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations, J. Phys. Chem. C 119 (2015) 16131−16138 doi: 10.1021/acs.jpcc.5b04313 open in new tab
  9. P. Erri, A. Varma, Diffusional Effects in Nickel Oxide Reduction Kinetics, Ind. Eng. Chem. Res. 48 (2009) 4-6 doi: 10.1021/ie071588m open in new tab
  10. D. Jelić et al., A thermogravimetric study of reduction of silver oxide under non-isothermal conditions, Contemp. Mater. I−2 (2010) 144-150 doi:10.5767/anurs.cmat.100102.en.144J open in new tab
  11. D. Jelić et al., A kinetic study of copper(II) oxide powder reduction with hydrogen, based on thermogravimetry, Thermochim. Acta 521 (2011) 211-217 doi:10.1016/j.tca.2011.04.026 open in new tab
  12. W. V. Schulmeyer, H. M. Ortner, Mechanisms of the hydrogen reduction of molybdenum oxides, Int. J. Refract. Metals Hard Mater. 20 (2002) 261-269 doi:10.1016/S0263 open in new tab
  13. B.-S. Kim et al., Study on the Reduction of Molybdenum Dioxide by Hydrogen, Mater. Trans. 49(9) (2009) 2147-2152 doi:10.2320/matertrans.MER2008103 open in new tab
  14. S. Vyazovkin, C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta 340-341 (1999) 53-68 doi.org/10.1016/S0040-6031(99)00253-1 open in new tab
  15. S. Vyazovkin et al., ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011) 1-19 doi:10.1016/j.tca.2011.03.034 open in new tab
  16. F. Korkmaz et al., Thermodynamic Analysis and Reduction of Bismuth Oxide by Ethanol, Metall. Mater. Trans. B 47B (2016) 2378-2385 doi:10.1007/s11663-016-0686-x open in new tab
  17. V. B. Chernogorenko, K. A. Lynchak, Production of bismuth powder by the reduction of bismuth oxide with a mixture of molecular and atomic hydrogen, Powder Metall. Met. Ceram. 12 (1973) 360-362 doi:10.1007/BF00791258 open in new tab
  18. B. Kusz et al., Structural studies and melting of bismuth nanocrystals in reduced bismuth germanate and bismuth silicate glasses, J. Non-Cryst. Solids 328 (2003) 137-145 doi:10.1016/S0022-3093(03)00466-6 open in new tab
  19. B. Bochentyn et al., Characterization of structural, thermal and mechanical properties of bismuth silicate glasses, J. Non-Cryst. Solids 439 (2016) 51-56 doi:10.1016/j.jnoncrysol.2016.02.026 open in new tab
  20. B. Trawiński et al., Structure and thermoelectric properties of bismuth telluride-Carbon composites, Mater. Res. Bull. 99 (2018) 10-17 doi:10.1016/j.materresbull.2017.10.043 open in new tab
  21. B. Bochentyn et al., Novel method of metal -oxide glass composite fabrication for use in thermoelectric devices, Mater. Res. Bull. 76 (2016) 195-204 doi:10.1016/ j.materresbull.2015.12.018 open in new tab
  22. G.-G. Lee et al., Synthesis of Bi-Te-Se-based Thermoelectric Powder by an Oxide- Reduction Process, Electron. Mater. Lett. 6(3) (2010) 123-127 doi:10.3365/eml.2010.09.123 open in new tab
  23. G.-G. Lee, G.-H. Ha, Synthesis of Bi0.5Sb1.5Te3 Thermoelectric Powder Using an Oxide-Reduction Process, J. Electron. Mater. 43(6) (2014) 1697-1702 doi:10.1007/s11664- 013-2846-y open in new tab
  24. Y. S. Lim et al., Synthesis of n-type Bi 2 Te 1-x Se x compounds through oxide reduction process and related thermoelectric properties, J. Eur. Ceram. Soc. 37 (2017) 3361-3366 doi:10.1016/j.jeurceramsoc.2017.04.020 open in new tab
  25. A. W. Coats, J. P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature 201 (1964) 68-69 doi:10.1038/201068a0 open in new tab
  26. M. Pospišil, Study of reduction kinetics of mixed oxides NiO-V2O5 with hydrogen, J. Thermal Anal. 27(1) (1983) 77-87 doi:10.1007/BF01907323 open in new tab
  27. J. A. Rodriguez et al., Experimental and Theoretical Studies on the Reaction of H2 with NiO: Role of O Vacancies and Mechanism for Oxide Reduction, J. Am. Chem. Soc. 124(2) (2002) 346-354 doi:10.1021/ja0121080 open in new tab
  28. G. Guenther, O. Guilllon, Solid state transitions of Bi2O3 nanoparticles, J. Mater. Res. 29(12) (2014) 1383-1392 doi:10.1557/jmr.2014 open in new tab
  29. FIGURE S5. Average activation energy -average correlation coefficient plot for different models of powder reduction; vertical lines mark an expected activation energy range 65-95 open in new tab
  30. kJ/mol; only models with av. correlation higher than 0.93 (17 from the group of 20) are shown FIGURE S6. Average activation energy -average correlation coefficient plot for different models of pellet reduction; vertical lines mark an expected activation energy range 65-105 open in new tab
  31. kJ/mol; only models with av. correlation higher than 0.93 (17 from the group of 20) are shown open in new tab
Sources of funding:
  • OPUS 11 umowa UMO-2016/21/B/ST8/03193
Verified by:
Gdańsk University of Technology

seen 138 times

Recommended for you

Meta Tags