Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies - Publication - MOST Wiedzy


Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies


Deterioration of water quality is a major problem world widely according to many international non-governmental organizations (NGO). As one of the European Union (EU) countries, Bulgaria is also obliged by EU legislation to maintain best practices in assessing surface water quality and the efficiency of wastewater treatment processes. For these reasons studies were undertaken to utilize ecotoxicological (Microtox®, Phytotoxkit FTM, Daphtoxkit FTM), instrumental (to determine pH, electrical conductivity (EC), chemical oxygen demand, total suspended solids (TSS), total nitrogen (N) and phosphorus (P), chlorides, sulphates, Cr, Co, Cu, Cd, Ba, V, Mn, Fe, Ni, Zn, Se, Pb), as well as advanced chemometric methods (partial least squares–discriminant analysis (PLS-DA)) in data evaluation to comprehensively assess wastewater treatment plants' (WWTPs) effluents and surface waters quality around 21 major Bulgarian cities. The PLS-DA classification model for the physicochemical parameters gave excellent discrimination between WWTP effluents and surface waters with 93.65% correct predictions (with significant contribution of EC, TSS, P, N, Cl, Fe, Zn, and Se). The classification model based on ecotoxicological data identifies the plant test endpoints as having a greater impact on the classification model efficiency than bacterial, or crustaceans’ endpoints studied.


  • 1


  • 1

    Web of Science

  • 1


Authors (8)


artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MOLECULES no. 24, pages 1 - 15,
ISSN: 1420-3049
Publication year:
Bibliographic description:
Yotova G., Lazarova S., Kudłak B., Zlateva B., Mihaylova V., Wieczerzak M., Venelinov T., Tsakovski S.: Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies// MOLECULES. -Vol. 24, iss. 12 (2019), s.1-15
Digital Object Identifier (open in new tab) 10.3390/molecules24122274
Bibliography: test
  1. Chutter, F. Research on the rapid biological assessment of water quality impacts in streams and rivers. WRC Report No 422/1/98. Water Research Commission: Pretoria, South Africa, 1998. open in new tab
  2. Cantinho, P.; Matos, M.; Trancoso, M.A.; Correia dos Santos, M.M. Behaviour and fate of metals in urban wastewater treatment plants: A review. Int. J. Environ. Sci. Technol. 2016, 13, 359-386, DOI: open in new tab
  3. Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online Solid-Phase Extraction LC-MS/MS: A Rapid and Valid Method for the Determination of Perfluorinated Compounds at Sub ng·L−1 Level in Natural Water. J. Chem. 2018, 2018, 3780825, DOI: open in new tab
  4. Barreca, S. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186-1191, DOI:10.1016/j.microc.2019.04.030. open in new tab
  5. Victor, R.; Kotter, R.; O'Brien, G.; Mitropoulos, M.; Panayi, G. WHO Guidelines for the safe use of wastewater, excreta and greywater -Volume 1: Policy and regulatory aspects. Int. J. Environ. Stud. 2006, 65, 157-176. open in new tab
  6. The Millennium Development Goals Report; The United Nation, New York, NY, USA, 2015. open in new tab
  7. European Parliament, Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJ. L. 2000, 327, 1-73. open in new tab
  8. Council of the European Union. Council Directive 91/271/EEC concerning urban waste-water treatment. OJ. L. 1991, 135, 40-52. open in new tab
  9. Council of the European Union. Council Directive 98/83/EC on the quality of water intended for human consumption. OJ. L. 1998, 330, 32-54. open in new tab
  10. Teodosiu, C.; Barjoveanu, G.; Teleman, D. Sustainable water resources management 1. River basin management and the EC Water Framework Directive. Environ. Eng. Manag. J. 2003, 2, 377-394, DOI:10.30638/eemj.2003.033. open in new tab
  11. Johnson, C. Toward post-sovereign environmental governance? Politics, scale, and EU water framework directive. Water Altern. 2012, 5, 83-97.
  12. Carter, J. Spatial planning, water and the Water Framework Directive: Insights from theory and practice. Geogr. J. 2007, 173, 330-342, DOI:10.1111/j.1475-4959.2007.00257.x. open in new tab
  13. Josefsson, H. Achieving ecological objectives, Laws 2012, 1, 39-63, DOI: open in new tab
  14. Van Rijswick, H.; Backes, C. Ground breaking landmark case on environmental quality standards? J. Eur. Environ. Plan. Law. 2015, 12, 363-377, DOI:10.1163/18760104-01204008. open in new tab
  15. Council of the European Union. Council Directive 75/440/EEC concerning the quality required of surface water intended for the abstraction of drinking water in the Member States. OJ. L. 1975, 194, 26-31. open in new tab
  16. Junninen, H.; Mønster, J.; Rey, M; Cancelinha, J.; Douglas, K.; Duane, M.; Forcina, V.; Müller, A.; Lagler, F.; Marelli, L.; et al. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. Environ. Sci. Technol. 2009, 43, 7964-7970, DOI:10.1021/es8032082. open in new tab
  17. Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S.; Singh, V.K. Chemometric data analysis of pollutants in wastewater-a case study. Anal. Chim. Acta. 2005, 532, 15-25, DOI:10.1016/j.aca.2004.10.043. open in new tab
  18. Einax, J.W.; Soldt, U. Geostatistical and multivariate statistical methods for the assessment of polluted soils-merits and limitations. Chemometr. Intell. Lab. Syst. 1999, 46, 79-91, DOI: 10.1016/S0169- 7439(98)00152-X. open in new tab
  19. Barreca, S.; Mazzola, A.; Orecchio, S.; Tuzzolino, N. Polychlorinated Biphenyls in Sediments from Sicilian Coastal Area (Scoglitti) using Automated Soxhlet, GC-MS, and Principal Component Analysis. Polycycl. Aromat. Comp. 2014, 34, 237-262, DOI: 10.1080/10406638.2014.886078. open in new tab
  20. Gurjar, S.K.; Tare, V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K. J. Clean. Prod. 2019, 222, 550- 564, DOI: open in new tab
  21. Li, T.; Li, S.; Liang, C.; Bush, R.T.; Xiong, L.; Jiang, Y. A comparative assessment of Australia's Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. J. Clean. Prod. 2018, 190, 1-11, DOI: open in new tab
  22. Bilgin, A. Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554, DOI: open in new tab
  23. Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-A case study. Water Res. 2004, 38, 3980- 3992, Doi:10.1016/j.watres.2004.06.011. open in new tab
  24. Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566-4578, DOI:10.1016/j.watres.2007.06.030. open in new tab
  25. Olkowska, E.; Kudłak, B.; Tsakovski, S.; Ruman, M.; Simeonov, V; Polkowska, Z. Assessment of the water quality of Kłodnica River catchment using self-organizing maps. Sci. Total Environ. 2014, 476-477, 477-484, DOI: open in new tab
  26. Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132-144, DOI: open in new tab
  27. Franklin, J.B.; Sathish, T.; Vinithkumar, N.V.; Kirubagaran, R.; Madeswaran, P. Seawater quality conditions of the south Andaman Sea (Bay of Bengal, Indian Ocean) in lustrum during 2010s decade. Mar. Pollut. Bull. 2018, 136, 424-434, DOI: open in new tab
  28. Bostanmaneshrad, F.; Partani, S.; Noori, R.; Nachtnebel, H-P.; Berndtsson, R.; Adamowski, J.F. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin. Sci. Total Environ. 2018, 639, 1588-1600. DOI: open in new tab
  29. Voyslavov, T.; Tsakovski, S.; Simeonov, V. Hasse diagram technique as a tool for water quality assessment. Anal. Chim. Acta. 2013, 770, 29-35, DOI: open in new tab
  30. Voyslavov, T.; Tsakovski, S.; Simeonov, V. Surface water quality assessment using self-organizing maps and Hasse diagram technique. Chemom. Intell. Lab. Syst. 2012, 118, 280-286, DOI:10.1016/j.chemolab.2012.05.011. open in new tab
  31. Tsakovski, S.; Astel, A.; Simeonov, V. Assessment of the water quality of a river catchment by chemometric expertise. J. Chemometrics. 2010; 24, 694-702, DOI:10.1002/cem.1333. open in new tab
  32. Singh, K.R.; Goswami, A.P.; Kalamdhad, A.S.; Kumar, B. Assessment of surface water quality of Pagladia, Beki and Kolong river (Assam, India) using multivariate statistical techniques. Intl. J. River Basin Manag. 2019, 2019, 1-10, DOI:10.1080/15715124.2019.1566236. open in new tab
  33. Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis -a marriage of convenience or a shotgun wedding. Anal. Chim. Acta. 2015, 879, 10-23, DOI: 10.1016/j.aca.2015.02.012. open in new tab
  34. Lee, L.C.; Liong, C-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526-3539, DOI:10.1039/C8AN00599K. open in new tab
  35. Platikanov, S.; Rodriguez-Mozaz, S.; Huerta, B.; Barceló, D.; Cros, J.; Batle, M.; Poch, G.; Tauler, R. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements. J. Environ. Manage. 2014, 140, 33-44, DOI:10.1016/j.jenvman.2014.03.006. open in new tab
  36. Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namiesnik, J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 2012, 87, 962-968, DOI:10.1016/j.chemosphere.2012.01.057. open in new tab
  37. Kudłak, B.; Wieczerzak, M.; Yotova, G.; Tsakovski, S.; Simeonov, V.; Namiesnik, J. Environmental risk assessment of Polish wastewater treatment plant activity. Chemosphere 2016, 160, 181-188, DOI:10.1016/j.chemosphere.2016.06.086. open in new tab
  38. Manusadzianas, L.; Balkelyte, L.; Sadauskas, K.; Blinova, I.; Põllumaa, L.; Kahru, A. Ecotoxicological study of Lithuanian and Estonian wastewaters: Selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquat. Toxicol. 2003, 63, 27-41, DOI:10.1016/S0166-445X(02)00132-7. open in new tab
  39. Wang, N.; Zeng, N.N.; Zhu, W. Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations. In proceedings of the Northeast SAS User Group Section of Health Care and Life Sciences, Baltimore, Maryland, MD, USA, 14-17 November 2010; pp. 1-9. open in new tab
  40. Tjandraatmadja, G.; Pollard, C.; Sheedy, C.; Gozukara, Y. Sources of contaminants in domestic wastewater: Nutrients and additional elements from household products. CSIRO Publishing: Canberra, Australia, 2010.
  41. European Commission. Pollutants in urban wastewater and sewage sludge; Office for Official Publications of the European Communities: Luxembourg, 2001; pp. 12-63. open in new tab
  42. DIN 38409-41:1980-12 -German standard methods for the examination of water, waste water and sludge; open in new tab
  43. Summary effect and substance characteristics (group H); Determination of the chemical oxygen demand (COD) in the range above 15 mg / l (H 41). German Institute for Standardisation, 1980. DOI: 10.31030/1209856. open in new tab
  44. Hach Company. Working Procedure: LCK 138 LATON, 1-16 mg/L Total Nitrogen, TNb DOC312.53.94004. Available online: (accessed on 9 June 2019). open in new tab
  45. Hach Company. Working procedure: LCK348 Phosphate DOC312.53.94020 Available online: (accessed on 9 June 2019). open in new tab
  46. Hach Company. User Manual: 5014 Probe DOC012.98.90299. Available online: (accessed on 9 June 2019). open in new tab
  47. Hach Company. User Manual: 5070 Probe. DOC012.98.90314. Available online: (accessed on 9 June 2019). open in new tab
  48. BSI. BS EN 872:2005 -Water Quality-Determination of Suspended Solids-Method by Filtration Through Glass Fibre Filters. BSI, 2005. open in new tab
  49. Wieczerzak, M.; Kudłak, B.; Namieśnik, J. Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds. Env. Sci. Pol. Res. 2018, 25, 18717-18727, DOI:10.1007/s11356- 018-2049-4. open in new tab
  50. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675, DOI:10.1038/nmeth.2089. open in new tab
  51. Szymańska E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012, 8, S3-S16, DOI:10.1007/s11306-011-0330- 3. open in new tab
Sources of funding:
  • Bułgarski Grant DN 19/15
Verified by:
Gdańsk University of Technology

seen 48 times

Recommended for you

Meta Tags