Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation - Publication - MOST Wiedzy

Search

Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation

Abstract

Direct borohydride fuel cells (DBFCs) are devices which directly convert the chemical energy stored in the borohydride ion and oxidant into electrical energy as a result of redox reactions. Unfortunately, a significant amount of fuel is lost as a result of the undesirable hydrolysis reaction. The selection of an efficient borohydride hydrolysis inhibitor requires detailed knowledge regarding the interaction mechanism between the inhibitor molecule and electrode surface. In this study, various amounts of thiourea additives (0.011–1.600 mM) were tested to select the best fuel composition for DBFC application. When AB5-type anode was used, only partial inhibition of sodium borohydride hydrolysis was a desirable phenomenon. Partially released hydrogen results in the improvement of catalytic properties of the alloy. The addition of 0.016 mM thiourea does not inhibit the oxidation of borohydride, on the contrary, it increases the practical capacity from 27% to 41% of the theoretical value. Moreover, we indicate that the addition of thiourea prevents corrosion as well as degradation of the electrode surface. Pressure measurements confirmed the effectiveness of thiourea in relation to hydrogen evolution, while X-ray photoelectron spectroscopy and Raman spectroscopy revealed that the electrode surface was not poisoned.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Authors (6)

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF ALLOYS AND COMPOUNDS no. 829, pages 1 - 12,
ISSN: 0925-8388
Language:
English
Publication year:
2020
Bibliographic description:
Graś M., Wojciechowski J., Lota K., Buchwald T., Ryl J., Lota G.: Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation// JOURNAL OF ALLOYS AND COMPOUNDS -Vol. 829, (2020), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jallcom.2020.154553
Bibliography: test
  1. Y. Liang, Y. Li, H. Wang, H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am. Chem. Soc. 135 (2013) 2013e2036. open in new tab
  2. International Partnership for Hydrogen and Fuel Cells in the Economy IPHE Communique: Hydrogen and Fuel Cells: A Clean, Real and Global Opportunity, 2017. http://www.iphe.net/docs/Communique%202015-12-01%20Final.pdf. accessed 13 December 2017. open in new tab
  3. T. Maiyalagan, V.S. Saji, Electrocatalysts for Low Temperature Fuel Cells, Wiley-VCH, Weinheim, 2017. open in new tab
  4. E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuel cells: from materials to systems, Energy Environ. Sci. 5 (2012) 5668e5680. open in new tab
  5. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim. Acta 276 (2018) 293e303. open in new tab
  6. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, X. Li, Superior resistance to hydrogen damage for selective laser melted 316l stainless steel in a proton exchange membrane fuel cell environment, Corrosion Sci. In press, https://doi.org/10.1016/j.corsci.2019.108425. open in new tab
  7. D.M.F. Santos, C.A.C. Sequeira, Sodium borohydride as a fuel for the future, Renew. Sustain. Energy Rev. 15 (2011) 3980e4001. open in new tab
  8. C. Ponce de Le on, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman, Direct borohydride fuel cells, J. Power Sources 155 (2006) 172e181.
  9. C.J. Lee, T. Kim, Hydrogen supply system employing direct decomposition of solid-state NaBH 4 , Int. J. Hydrogen Energy 40 (2015) 2274e2282. open in new tab
  10. R. Jamard, A. Latour, J. Salomon, P. Capron, A. Martinent-Beaumont, Study of fuel efficiency in a direct borohydride fuel cell, J. Power Sources 176 (2008) 287e292. open in new tab
  11. B.H. Liu, Z.P. Li, S. Suda, Anodic oxidation of alkali borohydrides catalyzed by nickel, J. Electrochem. Soc. 150 (2003) A398eA402. open in new tab
  12. K. Wang, K. Jiang, J. Lu, L. Zhuang, C. Cha, X. Hu, G.Z. Chen, Eight-electron oxidation of borohydride at potentials negative to reversible hydrogen elec- trode, J. Power Sources 185 (2008) 892e894. open in new tab
  13. X. Yang, Y. Liu, S. Li, X. Wei, L. Wang, Y. Chen, A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts, Sci. Rep. 2 (2012) 567. open in new tab
  14. G. Behmenyar, A.N. Akin, Investigation of carbon supported Pd-Cu nano- particles as anode catalysts for direct borohydride fuel cell, J. Power Sources 249 (2014) 239e246. open in new tab
  15. G. Lota, A. Sierczynska, I. Acznik, K. Lota, AB 5 -type Hydrogen storage alloy modified with carbon used as anodic materials in borohydride fuel cells, Int. J. Electrochem. Sci. 9 (2014) 659e669.
  16. M. Martins, B. Sljuk c, C.A.C. Sequeira, Ӧ. Metin, M. Erdem, T. Sener, D.M.F. Santos, Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells, Int. J. Hydrogen Energy 41 (2016) 10914e10922. open in new tab
  17. C. Grimmer, R. Zacharias, M. Grandi, B. Pichler, I. Kaltenboeck, F. Gebetsroither, J. Wagner, B. Cermenek, S. Weinberger, A. Schenk, V. Hacker, A membrane-free and practical mixed electrolyte direct borohydride fuel cell, J. Electrochem. Soc. 163 (2016) F278eF283. open in new tab
  18. K. Wang, K. Jiang, J. Lu, L. Zhuang, C. Cha, X. Hu, G.Z. Chen, Eight-electron oxidation of borohydride at potentials negative to reversible hydrogen elec- trode, J. Power Sources 185 (2008) 892e894. open in new tab
  19. G. Wang, X. Wang, R. Miao, D. Cao, K. Sun, Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH 4 oxidation, Int. J. Hydrogen Energy 35 (2010) 1227e1231. open in new tab
  20. E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells, Electrochim. Acta 49 (2004) 965e978. open in new tab
  21. U.B. Demirci, Comments on the paper "Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cell" by E. Gyenge, Electrochim. Acta 49 (2004) 965: thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell? Electrochim. Acta 52 (2007) 5119e5121. open in new tab
  22. R. Holze, S. Schomaker, New results on the electrosorption of urea and thio- urea on gold electrodes, Electrochim. Acta 35 (1990) 613e620. open in new tab
  23. G. Garcia, J.L. Rodriguez, G.I. Lacconi, E. Pastor, Spectroscopic investigation of the adsorption and oxidation of thiourea on polycrystalline Au and Au (111) in acidic media, Langmuir 20 (2004) 8773e8780. open in new tab
  24. A.E. Bolzan, R.C.V. Piatti, R.C. Salvarezza, A.J. Arvia, Electrochemical study of thiourea and substituted thiourea adsorbates on polycrystalline platinum electrodes in aqueous sulfuric acid, J. Appl. Electrochem. 32 (2002) 611e620. open in new tab
  25. J.Z. Zheng, B. Ren, D.Y. Wu, Z.Q. Tian, Thiourea adsorption on a Pt surface as detected by electrochemical methods and surface-enhanced Raman spec- troscopy, J. Electroanal. Chem. 574 (2005) 285e289. open in new tab
  26. G. Garcia, J.L. Rodriguez, G.I. Lacconi, E. Pastor, Adsorption and oxidation pathways of thiourea at polycrystalline platinum electrodes, J. Electroanal. Chem. 588 (2006) 169e178.
  27. A. Lukomska, S. Smolinski, J. Sobkowski, Adsorption of thiourea on mono- crystalline copper electrodes, Electrochim. Acta 46 (2001) 3111e3117. open in new tab
  28. M. Fleischmann, I.R. Hill, G. Sundholm, A Raman spectroscopic study of thiourea adsorbed on silver and copper electrodes, J. Electroanal. Chem. Interfacial Electrochem. 157 (1983) 359e368. open in new tab
  29. Z.Q. Tian, Y.Z. Lian, M. Fleischmann, In-situ Raman spectroscopic studies on coadsorption of thiourea with anions at silver electrodes, Electrochim. Acta 35 (1990) 879e883. open in new tab
  30. J. Bukowska, K. Jackowska, Influence of thiourea on hydrogen evolution at a silver electrode as studied by electrochemical and SERS methods, J. Electroanal. Chem. 367 (1994) 41e48. open in new tab
  31. C. Celik, F.G. Boyaci San, H.I. Sarac, Improving the direct borohydride fuel cell performance with thiourea as the additive in the sodium borohydride solu- tion, Int. J. Hydrogen Energy 35 (2010) 8678e8682. open in new tab
  32. V.W.S. Lam, D.C.W. Kannangara, A. Alfantazi, E.L. Gyenge, Electrochemical quartz crystal microbalance study of borohydride electro-oxidation on Pt: the effect of borohydride concentration and thiourea adsorption, J. Phys. Chem. C 115 (2011) 2727e2737. open in new tab
  33. E.L. Gyenge, Reply to "Comments on the paper ['Electrooxidation of borohy- dride on platinum and gold electrodes: implications for direct borohydride fuel cells' by E. Gyenge, Electrochim. Acta 49 (2004) 965]: thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell?" by U.B. Demirci, Electrochim. Acta 52 (2007) 5122e5123.
  34. M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Os and Os- alloys (Os-Sn, Os-Mo and Os-V) for electrocatalysis of methanol and boro- hydride oxidation, Int. J. Hydrogen Energy 30 (2005) 1323e1331. open in new tab
  35. M. Gra s, A. Sierczy nska, K. Lota, I. Acznik, G. Lota, The modification of anode material for direct borohydride fuel cell, Ionics 22 (2016) 2539e2544.
  36. M. Karwowska, K.J. Fijalkowski, A. Czerwi nski, Corrosion of hydrogen storage metal alloy LaMm-Ni 4.1 Al 0.3 Mn 0.4 Co 0.45 in the aqueous solutions of alkali metal hydroxides, Materials 11 (2018) 2423. open in new tab
  37. K. Szubert, J. Wojciechowski, J. Karasiewicz, H. Maciejewski, G. Lota, Corro- sion-protective coatings based on fluorocarbosilane, Prog. Org. Coating 123 (2018) 374e383. open in new tab
  38. J. Wojciechowski, Ł. Kolanowski, A. Bund, G. Lota, The influence of current collector corrosion on the performance of electrochemical capacitors, J. Power Sources 368 (2017) 18e29. open in new tab
  39. J. Wojciechowski, K. Szubert, R. Peipmann, M. Fritz, U. Schmidt, A. Bund, G. Lota, Anti-corrosive properties of silane coatings deposited on anodised aluminium, Electrochim. Acta 220 (2016) 1e10. open in new tab
  40. K. Szubert, J. Wojciechowski, J. Karasiewicz, H. Maciejewski, G. Lota, Corrosion protection of stainless steel by triethoxyoctylsilane and tetraethoxysilane, Int. J. Electrochem 11 (2016) 8256e8269. open in new tab
  41. R.T. Loto, C.A. Loto, A.P.I. Popoola, Corrosion inhibition of thiourea and thia- diazole derivatives: a review, J. Mater. Environ. Sci. 3 (2012) 885e894. open in new tab
  42. W. J Paschoalino, E.A. Ticianelli, An investigation of the borohydride oxidation reaction on La-Ni-based hydrogen storage alloys, Int. J. Hydrogen Energy 38 (2013) 7344e7352. open in new tab
  43. L. Wang, G. Wu, Z. Yang, Y. Gao, X. Mao, C. Ma, Electrochemical characteristics of LaNi 4.5 Al 0.5 alloy used as anodic catalyst in a direct borohydride fuel cell, J. Mater. Sci. Technol. 27 (2011) 46e50. open in new tab
  44. I. Merino-Jim enez, C. Ponce de Le on, A.A. Shah, F.C. Walsh, Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources 219 (2012) 339e357. open in new tab
  45. J.I. Martins, M.C. Nunes, R. Koch, L. Martins, M. Bazzaoui, Electrochemical oxidation of borohydride on platinum electrodes: the influence of thiourea in direct fuel cells, Electrochim. Acta 52 (2007) 6443e6449. open in new tab
  46. M. Gra s, Ł. Kolanowski, J. Wojciechowski, G. Lota, Electrochemical super- capacitor with thiourea-based aqueous electrolyte, Electrochem. Commun. 97 (2018) 32e36.
  47. P.J. Vandeberg, D.C. Johnson, A study of the voltammetric response of thiourea and ethylene thiourea at gold electrodes in alkaline media, J. Electroanal. Chem 362 (1993) 129e139. open in new tab
  48. R.N. Bulakhe, S. Sahoo, T.T. Nguyen, D.L. Chandrakant, D. Lokhande, R. Changhyun, Y.R. Lee, J.-J. Shim, Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors applica- tion, RSC Adv. 6 (2016) 14844e14851. open in new tab
  49. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer, New York, 2014. open in new tab
  50. P. Slepski, K. Darowicki, M. Kopczyk, A. Sierczynska, K. Andrearczyk, Elec- trochemical impedance studies of AB 5 -type hydrogen storage alloy, J. Power Sources 195 (2010) 2457e2462. open in new tab
  51. G. Wang, X. Wang, R. Miao, D. Cao, K. Sun, Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH 4 oxidation, Int. J. Hydrogen Energy 35 (2010) 1227e1231. open in new tab
  52. M. Ikoma, K. Komori, S. Kaida, C. Iwakura, Effect of alkali-treatment of hydrogen storage alloy on the degradation of Ni/MH batteries, J. Alloys Compd. 284 (1999) 92e98. open in new tab
  53. J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, Investigation of the electro- chemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy, J. Electroanal. Chem. 778 (2016) 126e136. open in new tab
  54. K. Lota, A. Sierczy nska, G. Lota, Synthesis and electrochemical properties of carbon nanotubes obtained by pyrolysis of acetylene using AB 5 alloy, J. Solid State Electrochem. 14 (2010) 2209e2212. open in new tab
  55. J. Ryl, M. Brodowski, M. Kowalski, W. Lipinska, P. Niedzialkowski, J. Wysocka, Corrosion inhibition mechanism and efficiency differentiation of dihydrox- ybenzene isomers towards aluminum alloy 5754 in alkaline media, Materials 12 (2019) 3067. open in new tab
  56. J. Chen, H. Zhang, P. Liu, Y. Li, G. Li, T. An, H. Zhao, Thiourea sole doping re- agent approach for controllable N, S co-doping of pre-synthesized large-sized carbon nanospheres as electrocatalyst for oxygen reduction reaction, Carbon 92 (2015) 339e347. open in new tab
  57. D. Chen, R. Yang, L. Chen, Y. Zou, B. Ren, L. Li, S. Li, Y. Yan, Y. Xu, One-pot fabrication of nitrogen and sulfur dual-doped graphene/sulfur cathode via microwave assisted method for long cycle-life lithium-sulfur batteries, J. Alloys Compd. 746 (2018) 116e124. open in new tab
  58. H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS 2 via engineered heteroatom defect boosting overall water splitting, ACS Nano 11 (2017) 11574e11583. open in new tab
  59. J.-G. Kang, Y.-I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH) 3 and La 2 O 3 nanostructures, Mater. Sci. Semicond. Pro- cess. 40 (2015) 737e743. open in new tab
  60. S. Chen, B. Pan, L. Zeng, S. Luo, X. Wang, W. Su, La 2 Sn 2 O 7 enhanced photo- catalytic CO 2 reduction with H 2 O by deposition of Au co-catalyst, RSC Adv. 7 (2017) 14186e14191. open in new tab
  61. M. Tong, L. Wang, P. Yu, X. Liu, H. Fu, 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, Front. Chem. Sci. Eng. 12 (2018) 417e424. open in new tab
  62. C. Fettkenhauer, X. Wang, K. Kailasam, M. Antonietti, D. Dontsova, Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl 2 eutectics, J. Mater. Chem. A. 3 (2015) 21227e21232. open in new tab
  63. P. Cao, J. Yao, B. Ren, R. Gu, Z. Tian, Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO 4 solution, J. Phys. Chem. B 106 (2002) 10150e10156. open in new tab
  64. A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical perfor- mance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes, J. Mater. Chem. A2 (2014) 16723e16730. open in new tab
  65. J. Nan, Y. Yang, Z. Lin, Raman spectroscopic study on the surface oxide layer of AB 5 -type metal hydride electrodes, Electrochim. Acta 46 (2001) 1767e1772. open in new tab
  66. P.V. Thomas, V. Ramakrishnan, V.K. Vaidyan, Oxidation studies of aluminium thin films by Raman spectroscopy, Thin Solid Films 170 (1989) 35e40. open in new tab
  67. M.E. Plonska-Brzezinska, D.M. Brus, A. Molina-Ontoria, L. Echegoyen, Syn- thesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes, RSC Adv. 3 (2013) 25891e25901. open in new tab
Verified by:
Gdańsk University of Technology

seen 30 times

Recommended for you

Meta Tags