Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation - Publikacja - MOST Wiedzy

Wyszukiwarka

Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation

Abstrakt

Direct borohydride fuel cells (DBFCs) are devices which directly convert the chemical energy stored in the borohydride ion and oxidant into electrical energy as a result of redox reactions. Unfortunately, a significant amount of fuel is lost as a result of the undesirable hydrolysis reaction. The selection of an efficient borohydride hydrolysis inhibitor requires detailed knowledge regarding the interaction mechanism between the inhibitor molecule and electrode surface. In this study, various amounts of thiourea additives (0.011–1.600 mM) were tested to select the best fuel composition for DBFC application. When AB5-type anode was used, only partial inhibition of sodium borohydride hydrolysis was a desirable phenomenon. Partially released hydrogen results in the improvement of catalytic properties of the alloy. The addition of 0.016 mM thiourea does not inhibit the oxidation of borohydride, on the contrary, it increases the practical capacity from 27% to 41% of the theoretical value. Moreover, we indicate that the addition of thiourea prevents corrosion as well as degradation of the electrode surface. Pressure measurements confirmed the effectiveness of thiourea in relation to hydrogen evolution, while X-ray photoelectron spectroscopy and Raman spectroscopy revealed that the electrode surface was not poisoned.

Cytowania

  • 3

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 39 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
JOURNAL OF ALLOYS AND COMPOUNDS nr 829, strony 1 - 12,
ISSN: 0925-8388
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Graś M., Wojciechowski J., Lota K., Buchwald T., Ryl J., Lota G.: Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation// JOURNAL OF ALLOYS AND COMPOUNDS -Vol. 829, (2020), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jallcom.2020.154553
Bibliografia: test
  1. Y. Liang, Y. Li, H. Wang, H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am. Chem. Soc. 135 (2013) 2013e2036. otwiera się w nowej karcie
  2. International Partnership for Hydrogen and Fuel Cells in the Economy IPHE Communique: Hydrogen and Fuel Cells: A Clean, Real and Global Opportunity, 2017. http://www.iphe.net/docs/Communique%202015-12-01%20Final.pdf. accessed 13 December 2017. otwiera się w nowej karcie
  3. T. Maiyalagan, V.S. Saji, Electrocatalysts for Low Temperature Fuel Cells, Wiley-VCH, Weinheim, 2017. otwiera się w nowej karcie
  4. E.H. Yu, X. Wang, U. Krewer, L. Li, K. Scott, Direct oxidation alkaline fuel cells: from materials to systems, Energy Environ. Sci. 5 (2012) 5668e5680. otwiera się w nowej karcie
  5. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim. Acta 276 (2018) 293e303. otwiera się w nowej karcie
  6. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, X. Li, Superior resistance to hydrogen damage for selective laser melted 316l stainless steel in a proton exchange membrane fuel cell environment, Corrosion Sci. In press, https://doi.org/10.1016/j.corsci.2019.108425. otwiera się w nowej karcie
  7. D.M.F. Santos, C.A.C. Sequeira, Sodium borohydride as a fuel for the future, Renew. Sustain. Energy Rev. 15 (2011) 3980e4001. otwiera się w nowej karcie
  8. C. Ponce de Le on, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman, Direct borohydride fuel cells, J. Power Sources 155 (2006) 172e181.
  9. C.J. Lee, T. Kim, Hydrogen supply system employing direct decomposition of solid-state NaBH 4 , Int. J. Hydrogen Energy 40 (2015) 2274e2282. otwiera się w nowej karcie
  10. R. Jamard, A. Latour, J. Salomon, P. Capron, A. Martinent-Beaumont, Study of fuel efficiency in a direct borohydride fuel cell, J. Power Sources 176 (2008) 287e292. otwiera się w nowej karcie
  11. B.H. Liu, Z.P. Li, S. Suda, Anodic oxidation of alkali borohydrides catalyzed by nickel, J. Electrochem. Soc. 150 (2003) A398eA402. otwiera się w nowej karcie
  12. K. Wang, K. Jiang, J. Lu, L. Zhuang, C. Cha, X. Hu, G.Z. Chen, Eight-electron oxidation of borohydride at potentials negative to reversible hydrogen elec- trode, J. Power Sources 185 (2008) 892e894. otwiera się w nowej karcie
  13. X. Yang, Y. Liu, S. Li, X. Wei, L. Wang, Y. Chen, A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts, Sci. Rep. 2 (2012) 567. otwiera się w nowej karcie
  14. G. Behmenyar, A.N. Akin, Investigation of carbon supported Pd-Cu nano- particles as anode catalysts for direct borohydride fuel cell, J. Power Sources 249 (2014) 239e246. otwiera się w nowej karcie
  15. G. Lota, A. Sierczynska, I. Acznik, K. Lota, AB 5 -type Hydrogen storage alloy modified with carbon used as anodic materials in borohydride fuel cells, Int. J. Electrochem. Sci. 9 (2014) 659e669.
  16. M. Martins, B. Sljuk c, C.A.C. Sequeira, Ӧ. Metin, M. Erdem, T. Sener, D.M.F. Santos, Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells, Int. J. Hydrogen Energy 41 (2016) 10914e10922. otwiera się w nowej karcie
  17. C. Grimmer, R. Zacharias, M. Grandi, B. Pichler, I. Kaltenboeck, F. Gebetsroither, J. Wagner, B. Cermenek, S. Weinberger, A. Schenk, V. Hacker, A membrane-free and practical mixed electrolyte direct borohydride fuel cell, J. Electrochem. Soc. 163 (2016) F278eF283. otwiera się w nowej karcie
  18. K. Wang, K. Jiang, J. Lu, L. Zhuang, C. Cha, X. Hu, G.Z. Chen, Eight-electron oxidation of borohydride at potentials negative to reversible hydrogen elec- trode, J. Power Sources 185 (2008) 892e894. otwiera się w nowej karcie
  19. G. Wang, X. Wang, R. Miao, D. Cao, K. Sun, Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH 4 oxidation, Int. J. Hydrogen Energy 35 (2010) 1227e1231. otwiera się w nowej karcie
  20. E. Gyenge, Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells, Electrochim. Acta 49 (2004) 965e978. otwiera się w nowej karcie
  21. U.B. Demirci, Comments on the paper "Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cell" by E. Gyenge, Electrochim. Acta 49 (2004) 965: thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell? Electrochim. Acta 52 (2007) 5119e5121. otwiera się w nowej karcie
  22. R. Holze, S. Schomaker, New results on the electrosorption of urea and thio- urea on gold electrodes, Electrochim. Acta 35 (1990) 613e620. otwiera się w nowej karcie
  23. G. Garcia, J.L. Rodriguez, G.I. Lacconi, E. Pastor, Spectroscopic investigation of the adsorption and oxidation of thiourea on polycrystalline Au and Au (111) in acidic media, Langmuir 20 (2004) 8773e8780. otwiera się w nowej karcie
  24. A.E. Bolzan, R.C.V. Piatti, R.C. Salvarezza, A.J. Arvia, Electrochemical study of thiourea and substituted thiourea adsorbates on polycrystalline platinum electrodes in aqueous sulfuric acid, J. Appl. Electrochem. 32 (2002) 611e620. otwiera się w nowej karcie
  25. J.Z. Zheng, B. Ren, D.Y. Wu, Z.Q. Tian, Thiourea adsorption on a Pt surface as detected by electrochemical methods and surface-enhanced Raman spec- troscopy, J. Electroanal. Chem. 574 (2005) 285e289. otwiera się w nowej karcie
  26. G. Garcia, J.L. Rodriguez, G.I. Lacconi, E. Pastor, Adsorption and oxidation pathways of thiourea at polycrystalline platinum electrodes, J. Electroanal. Chem. 588 (2006) 169e178.
  27. A. Lukomska, S. Smolinski, J. Sobkowski, Adsorption of thiourea on mono- crystalline copper electrodes, Electrochim. Acta 46 (2001) 3111e3117. otwiera się w nowej karcie
  28. M. Fleischmann, I.R. Hill, G. Sundholm, A Raman spectroscopic study of thiourea adsorbed on silver and copper electrodes, J. Electroanal. Chem. Interfacial Electrochem. 157 (1983) 359e368. otwiera się w nowej karcie
  29. Z.Q. Tian, Y.Z. Lian, M. Fleischmann, In-situ Raman spectroscopic studies on coadsorption of thiourea with anions at silver electrodes, Electrochim. Acta 35 (1990) 879e883. otwiera się w nowej karcie
  30. J. Bukowska, K. Jackowska, Influence of thiourea on hydrogen evolution at a silver electrode as studied by electrochemical and SERS methods, J. Electroanal. Chem. 367 (1994) 41e48. otwiera się w nowej karcie
  31. C. Celik, F.G. Boyaci San, H.I. Sarac, Improving the direct borohydride fuel cell performance with thiourea as the additive in the sodium borohydride solu- tion, Int. J. Hydrogen Energy 35 (2010) 8678e8682. otwiera się w nowej karcie
  32. V.W.S. Lam, D.C.W. Kannangara, A. Alfantazi, E.L. Gyenge, Electrochemical quartz crystal microbalance study of borohydride electro-oxidation on Pt: the effect of borohydride concentration and thiourea adsorption, J. Phys. Chem. C 115 (2011) 2727e2737. otwiera się w nowej karcie
  33. E.L. Gyenge, Reply to "Comments on the paper ['Electrooxidation of borohy- dride on platinum and gold electrodes: implications for direct borohydride fuel cells' by E. Gyenge, Electrochim. Acta 49 (2004) 965]: thiourea, a poison for the anode metallic electrocatalyst of the direct borohydride fuel cell?" by U.B. Demirci, Electrochim. Acta 52 (2007) 5122e5123.
  34. M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Os and Os- alloys (Os-Sn, Os-Mo and Os-V) for electrocatalysis of methanol and boro- hydride oxidation, Int. J. Hydrogen Energy 30 (2005) 1323e1331. otwiera się w nowej karcie
  35. M. Gra s, A. Sierczy nska, K. Lota, I. Acznik, G. Lota, The modification of anode material for direct borohydride fuel cell, Ionics 22 (2016) 2539e2544.
  36. M. Karwowska, K.J. Fijalkowski, A. Czerwi nski, Corrosion of hydrogen storage metal alloy LaMm-Ni 4.1 Al 0.3 Mn 0.4 Co 0.45 in the aqueous solutions of alkali metal hydroxides, Materials 11 (2018) 2423. otwiera się w nowej karcie
  37. K. Szubert, J. Wojciechowski, J. Karasiewicz, H. Maciejewski, G. Lota, Corro- sion-protective coatings based on fluorocarbosilane, Prog. Org. Coating 123 (2018) 374e383. otwiera się w nowej karcie
  38. J. Wojciechowski, Ł. Kolanowski, A. Bund, G. Lota, The influence of current collector corrosion on the performance of electrochemical capacitors, J. Power Sources 368 (2017) 18e29. otwiera się w nowej karcie
  39. J. Wojciechowski, K. Szubert, R. Peipmann, M. Fritz, U. Schmidt, A. Bund, G. Lota, Anti-corrosive properties of silane coatings deposited on anodised aluminium, Electrochim. Acta 220 (2016) 1e10. otwiera się w nowej karcie
  40. K. Szubert, J. Wojciechowski, J. Karasiewicz, H. Maciejewski, G. Lota, Corrosion protection of stainless steel by triethoxyoctylsilane and tetraethoxysilane, Int. J. Electrochem 11 (2016) 8256e8269. otwiera się w nowej karcie
  41. R.T. Loto, C.A. Loto, A.P.I. Popoola, Corrosion inhibition of thiourea and thia- diazole derivatives: a review, J. Mater. Environ. Sci. 3 (2012) 885e894. otwiera się w nowej karcie
  42. W. J Paschoalino, E.A. Ticianelli, An investigation of the borohydride oxidation reaction on La-Ni-based hydrogen storage alloys, Int. J. Hydrogen Energy 38 (2013) 7344e7352. otwiera się w nowej karcie
  43. L. Wang, G. Wu, Z. Yang, Y. Gao, X. Mao, C. Ma, Electrochemical characteristics of LaNi 4.5 Al 0.5 alloy used as anodic catalyst in a direct borohydride fuel cell, J. Mater. Sci. Technol. 27 (2011) 46e50. otwiera się w nowej karcie
  44. I. Merino-Jim enez, C. Ponce de Le on, A.A. Shah, F.C. Walsh, Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources 219 (2012) 339e357. otwiera się w nowej karcie
  45. J.I. Martins, M.C. Nunes, R. Koch, L. Martins, M. Bazzaoui, Electrochemical oxidation of borohydride on platinum electrodes: the influence of thiourea in direct fuel cells, Electrochim. Acta 52 (2007) 6443e6449. otwiera się w nowej karcie
  46. M. Gra s, Ł. Kolanowski, J. Wojciechowski, G. Lota, Electrochemical super- capacitor with thiourea-based aqueous electrolyte, Electrochem. Commun. 97 (2018) 32e36.
  47. P.J. Vandeberg, D.C. Johnson, A study of the voltammetric response of thiourea and ethylene thiourea at gold electrodes in alkaline media, J. Electroanal. Chem 362 (1993) 129e139. otwiera się w nowej karcie
  48. R.N. Bulakhe, S. Sahoo, T.T. Nguyen, D.L. Chandrakant, D. Lokhande, R. Changhyun, Y.R. Lee, J.-J. Shim, Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors applica- tion, RSC Adv. 6 (2016) 14844e14851. otwiera się w nowej karcie
  49. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer, New York, 2014. otwiera się w nowej karcie
  50. P. Slepski, K. Darowicki, M. Kopczyk, A. Sierczynska, K. Andrearczyk, Elec- trochemical impedance studies of AB 5 -type hydrogen storage alloy, J. Power Sources 195 (2010) 2457e2462. otwiera się w nowej karcie
  51. G. Wang, X. Wang, R. Miao, D. Cao, K. Sun, Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH 4 oxidation, Int. J. Hydrogen Energy 35 (2010) 1227e1231. otwiera się w nowej karcie
  52. M. Ikoma, K. Komori, S. Kaida, C. Iwakura, Effect of alkali-treatment of hydrogen storage alloy on the degradation of Ni/MH batteries, J. Alloys Compd. 284 (1999) 92e98. otwiera się w nowej karcie
  53. J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, Investigation of the electro- chemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy, J. Electroanal. Chem. 778 (2016) 126e136. otwiera się w nowej karcie
  54. K. Lota, A. Sierczy nska, G. Lota, Synthesis and electrochemical properties of carbon nanotubes obtained by pyrolysis of acetylene using AB 5 alloy, J. Solid State Electrochem. 14 (2010) 2209e2212. otwiera się w nowej karcie
  55. J. Ryl, M. Brodowski, M. Kowalski, W. Lipinska, P. Niedzialkowski, J. Wysocka, Corrosion inhibition mechanism and efficiency differentiation of dihydrox- ybenzene isomers towards aluminum alloy 5754 in alkaline media, Materials 12 (2019) 3067. otwiera się w nowej karcie
  56. J. Chen, H. Zhang, P. Liu, Y. Li, G. Li, T. An, H. Zhao, Thiourea sole doping re- agent approach for controllable N, S co-doping of pre-synthesized large-sized carbon nanospheres as electrocatalyst for oxygen reduction reaction, Carbon 92 (2015) 339e347. otwiera się w nowej karcie
  57. D. Chen, R. Yang, L. Chen, Y. Zou, B. Ren, L. Li, S. Li, Y. Yan, Y. Xu, One-pot fabrication of nitrogen and sulfur dual-doped graphene/sulfur cathode via microwave assisted method for long cycle-life lithium-sulfur batteries, J. Alloys Compd. 746 (2018) 116e124. otwiera się w nowej karcie
  58. H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS 2 via engineered heteroatom defect boosting overall water splitting, ACS Nano 11 (2017) 11574e11583. otwiera się w nowej karcie
  59. J.-G. Kang, Y.-I. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH) 3 and La 2 O 3 nanostructures, Mater. Sci. Semicond. Pro- cess. 40 (2015) 737e743. otwiera się w nowej karcie
  60. S. Chen, B. Pan, L. Zeng, S. Luo, X. Wang, W. Su, La 2 Sn 2 O 7 enhanced photo- catalytic CO 2 reduction with H 2 O by deposition of Au co-catalyst, RSC Adv. 7 (2017) 14186e14191. otwiera się w nowej karcie
  61. M. Tong, L. Wang, P. Yu, X. Liu, H. Fu, 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, Front. Chem. Sci. Eng. 12 (2018) 417e424. otwiera się w nowej karcie
  62. C. Fettkenhauer, X. Wang, K. Kailasam, M. Antonietti, D. Dontsova, Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl 2 eutectics, J. Mater. Chem. A. 3 (2015) 21227e21232. otwiera się w nowej karcie
  63. P. Cao, J. Yao, B. Ren, R. Gu, Z. Tian, Surface-enhanced Raman scattering spectra of thiourea adsorbed at an iron electrode in NaClO 4 solution, J. Phys. Chem. B 106 (2002) 10150e10156. otwiera się w nowej karcie
  64. A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical perfor- mance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes, J. Mater. Chem. A2 (2014) 16723e16730. otwiera się w nowej karcie
  65. J. Nan, Y. Yang, Z. Lin, Raman spectroscopic study on the surface oxide layer of AB 5 -type metal hydride electrodes, Electrochim. Acta 46 (2001) 1767e1772. otwiera się w nowej karcie
  66. P.V. Thomas, V. Ramakrishnan, V.K. Vaidyan, Oxidation studies of aluminium thin films by Raman spectroscopy, Thin Solid Films 170 (1989) 35e40. otwiera się w nowej karcie
  67. M.E. Plonska-Brzezinska, D.M. Brus, A. Molina-Ontoria, L. Echegoyen, Syn- thesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes, RSC Adv. 3 (2013) 25891e25901. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 45 razy

Publikacje, które mogą cię zainteresować

Meta Tagi