Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach - Publication - Bridge of Knowledge

Search

Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach

Abstract

The developed process is based on alternative, green and cheap solvents for efficient desulfurization of fuels. Several deep eutectic solvents (DESs) were successfully synthesized and studied as extraction solvents for desulfurization of model fuel containing thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT). The most important extraction parameters (i.e. kind of DES, DES: fuel volume ratio, hydrogen bond acceptor: hydrogen bond donor mole ratio, time of extraction and temperature) were optimized using central composite design model. Furthermore, the mutual solubility of DES and model fuel and influence of multistage extraction, reusability, regeneration of DES and content of aromatic groups in fuel are discussed followed by explanation of desulfurization mechanism, by means of density functional theory (DFT) as well as FT-IR analysis. The studies revealed high desulfurization effectiveness resulting in 91.5%, 95.4% and 99.2% removal of T, BT and DBT respectively in a single stage extraction. A three stage desulfurization provide >99.99% removal of T, BT and DBT. The research on the desulfurization mechanism revealed that π-π interaction is the main driving force for desulfurization process based on DES.

Citations

  • 1 0 1

    CrossRef

  • 0

    Web of Science

  • 1 0 2

    Scopus

Cite as

Full text

download paper
downloaded 127 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 296, pages 1 - 11,
ISSN: 0167-7322
Language:
English
Publication year:
2019
Bibliographic description:
Makoś P., Boczkaj G.: Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach// JOURNAL OF MOLECULAR LIQUIDS -Vol. 296, (2019), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2019.111916
Bibliography: test
  1. International Energy Agency, Energy and air pollution, world energy outlook special report, https://www.iea.org/publications/freepublications/publication/ WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf, Accessed date: 17 September 2018. open in new tab
  2. S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, K.K. Tadi, C.K. Yoo, Syn- thesis, characterization, and application of novel trihexyltetradecylphosphoniumbis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel, Fuel Process. Technol. 123 (2014) 1-10, https://doi.org/10.1016/j.fuproc.2014.02.001. open in new tab
  3. C.F. Mao, R.X. Zhao, X.P. Li, X.H. Gao, Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil, RSC Adv. 7 (2017) 12805-12811, https://doi.org/10.1039/C6RA28448E. open in new tab
  4. A. Fihri, R. Mahfouz, A. Shahrani, I. Taie, G. Alabedi, Pervaporative desulfurization of gasoline: a review, Chem. Eng. Process 107 (2016) 94-105, https://doi.org/10.1515/ aep-2015-0013. open in new tab
  5. V.C. Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC Adv. 2 (2012) 759-783, https://doi.org/10.1039/C1RA00309G. open in new tab
  6. R. Javadli, A. Klerk, Desulfurization of heavy oil, Appl. Petrochem. Res. 1 (2012) 3-19, https://doi.org/10.1007/s13203-012-0006-6. open in new tab
  7. J.M. Kwon, J.H. Moon, Y.S. Bae, D.G. Lee, H.C. Sohn, C.H. Lee, Adsorptive desulfuriza- tion and denitrogenation of refinery fuels using mesoporous silica adsorbents, Chem. Sus. Chem. 1 (2008) 307-309, https://doi.org/10.1002/cssc.200700011. open in new tab
  8. S. Bhatia, D.K. Sharma, Biodesulfurization of dibenzothiophene, its alkylated deriva- tives and crude oil by a newly isolated strain PantoeaagglomeransD23W3, Biochem. Eng. J. 50 (2010) 104-109, https://doi.org/10.1016/j.bej.2010.04.001. open in new tab
  9. J. Wang, L. Zhang, Y. Sun, B. Jiang, Y. Chen, X. Gao, H. Yang, Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids, Fuel Process. Technol. 177 (2018) 81-88, https://doi.org/10.1016/j.fuproc.2018.04.013. open in new tab
  10. Y. Gao, Z. Lv, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst, J. Hazard Mater. 359 (2018) 258-265, https://doi.org/ 10.1016/j.jhazmat.2018.07.008. open in new tab
  11. E. Kianpour, S. Azizian, M. Yarie, M.A. Zolfigol, M. Bayat, A task-specific phospho- nium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: an experimental and computational study, Chem. Eng. J. 295 (2016) 500-508, https://doi.org/10.1016/j.cej.2016.03.072. open in new tab
  12. F.L. Yu, C.Y. Liu, B. Yuan, P.H. Xie, C.X. Xie, S.T. Yu, Energy-efficient extractive desul- furization of gasoline by polyether-based ionic liquids, Fuel 177 (2016) 39-45, https://doi.org/10.1016/j.fuel.2016.02.063. open in new tab
  13. J.J. Gao, H. Meng, Y.Z. Lu, H.X. Zhang, C.X. Li, A carbonium pseudo ionic liquid with excellent extractive desulfurization performance, AIChE J. 59 (2013) 948-958, https://doi.org/10.1002/aic.13869. open in new tab
  14. L.F. Ramirez-Verduzco, F. Murrieta-Guevara, J.L. Garcia-Gutierrez, R. SaintMartin- Castanon, M.D. Martinez-Guerrero, M.D. Montiel-Pacheco, R. Mata-Diaz, Desulfuri- zation of middle distillates by oxidation and extraction process, Pet. Sci. Technol. 22 (2004) 129-139, https://doi.org/10.1081/LFT-120028528. open in new tab
  15. Y.J. Tian, Y. Yao, Y.H. Zhi, L.J. Yan, S.X. Lut, Combined extraction-oxidation system for oxidative desulfurization (ODS) of a model fuel, Energy Fuels 29 (2015) 618-625, https://doi.org/10.1021/ef502396b. open in new tab
  16. T. Adzamic, K. Sertic-Bionda, N. Marcec-Rahelic, Modeling of the fcc gasoline desul- furization process by liquid extraction with sulfolane, Pet. Sci. Technol. 28 (2010) 1936-1945, https://doi.org/10.1080/10916460903330056. open in new tab
  17. A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Deep desul- furization of diesel fuel by extraction with ionic liquids, Chem. Commun. 23 (2001) 2494-2495, https://doi.org/10.1039/B108411A. open in new tab
  18. R. Martíınez-Palou, R. Luque, Applications of ionic liquids in the removal of contam- inants from refinery feedstocks: an industrial perspective, Energy Environ. Sci. 7 (2014) https://doi.org/10.1039/C3EE43837F2414-24147. open in new tab
  19. M.H. Ibrahim, M. Hayyan, M.A. Hashim, A. Hayyan, The role of ionic liquids in desul- furization of fuels: a review, Renew. Sustain. Energy Rev. 76 (2017) 1534-1549, https://doi.org/10.1016/j.rser.2016.11.194. open in new tab
  20. N. Gathergood, M.T. Garcia, P.J. Scammells, Biodegradable ionic liquids: part I. Con- cept, preliminary targets and evaluation, Green Chem. 6 (2004) 166-175, https:// doi.org/10.1039/B315270G. open in new tab
  21. A. Romero, A. Santos, J. Tojo, A. Rodriguez, Toxicity and biodegradability of imidazolium ionic liquids, J. Hazard Mater. 151 (2008) 268-273, https://doi.org/ 10.1016/j.jhazmat.2007.10.079. open in new tab
  22. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142-9147, https://doi.org/10.1021/ ja048266j. open in new tab
  23. M. Francisco, A. van den Bruinhorst, M.C. Kroon, Low-transition-temperature mix- tures (LTTMs): a new generation of designer solvents, Angew. Chem., Int. Ed. Engl. 52 (2012) 3074-3085, https://doi.org/10.1002/anie.201207548. open in new tab
  24. C.A. Nkuku, R.J. LeSuer, Electrochemistry in deep eutectic solvents, J. Phys. Chem. B 111 (2007) 13271-13277, https://doi.org/10.1021/jp075794j. open in new tab
  25. C.M.A. Brett, Deep eutectic solvents and applications in electrochemical sensing, Curr. Opin. Electrochem. 10 (2018) 143-148, https://doi.org/10.1016/j.coelec. 2018.05.016. open in new tab
  26. S.T. Williamson, K. Shahbaz, F.S. Mjalli, I.M. AlNashef, M.M. Farid, Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol, Renew. Eng. 114 (2017) 480-488, https://doi.org/10.1016/j.renene.2017.07.046. open in new tab
  27. L.I.N. Tomé, V. Baião, W. Silva, C.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today. 10 (2018) 30-50, https://doi. org/10.1016/j.apmt.2017.11.005. open in new tab
  28. A. Abo-Hamad, M. Hayyan, M.A. AlSaadi, M.A. Hashim, Potential applications of deep eutectic solvents in nanotechnology, Chem. Eng. J. 273 (2015) 551-567, https://doi. org/10.1016/j.cej.2015.03.091. open in new tab
  29. A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Application of deep eu- tectic solvents in analytical chemistry. A review, Microchem. J. 135 (2017) 33-38, https://doi.org/10.1016/j.microc.2017.07.015. open in new tab
  30. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A 1570 (2018) 28-37, https://doi.org/10.1016/j.chroma.2018.07.070. open in new tab
  31. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric anal- ysis, J. Chromatogr. A 1555 (2018) 10-19, https://doi.org/10.1016/j.chroma.2018. 04.054. open in new tab
  32. W.N.A.W. Mokhtar, W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: optimization by Box- Behnken design, J. Taiwan Inst. Chem. Eng. 45 (2014) 1542-1548, https://doi.org/ 10.1016/j.jtice.2014.03.017. open in new tab
  33. S.E.E. Warrag, C.J. Peters, M.C. Kroon, Deep eutectic solvents for highly efficient sep- arations in oil and gas industries, Curr. Opin. Green Sustain. Chem. 5 (2017) 55-60, https://doi.org/10.1016/j.cogsc.2017.03.013. open in new tab
  34. J.M. Silva, R.L. Reis, A. Paiva, A.R.C. Duarte, Design of functional therapeutic deep eu- tectic solvents based on choline chloride and ascorbic acid, ACS Sustain. Chem. Eng. 6 (2018) 10355-10363, https://doi.org/10.1021/acssuschemeng.8b01687. open in new tab
  35. J. Li, H. Xiao, X. Tang, M. Zhou, Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization, Energy Fuels 30 (2016) 5411-5418, https:// doi.org/10.1021/acs.energyfuels.6b00471. open in new tab
  36. H. Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents, Fuel 225 (2018) 104-110, https://doi.org/10.1016/j.fuel.2018.03.159. open in new tab
  37. C. Li, D. Li, S. Zou, Z. Li, J. Yin, A. Wang, Y. Cui, Z. Yao, Q. Zhao, Extraction desulfuriza- tion process of fuels with ammonium-based deep eutectic solvents, Green Chem. 15 (2013) 2793-2799, https://doi.org/10.1039/C3GC41067F. open in new tab
  38. D. Chandran, M. Khalid, R. Walvekar, N.M. Mubarak, S. Dharaskar, W.Y. Wong, T.C.S.M. Gupta, Deep eutectic solvents for extraction-desulphurization: a review, J. Mol. Liq. 275 (2019) 312-322, https://doi.org/10.1016/j.molliq.2018.11.051. open in new tab
  39. K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using Choline Chloride-based deep eutec- tic solvents, Fuel 234 (2018) 1388-1400, https://doi.org/10.1016/j.fuel.2018.08.005. open in new tab
  40. F. Lima, J. Gouvenaux, L.C. Branco, A.J.D. Silvestre, I.M. Marrucho, Towards a sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel 234 (2018) 414-421, https://doi.org/10. 1016/j.fuel.2018.07.043. open in new tab
  41. W.S.A. Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep eu- tectic solvents for effective extractive desulfurization of liquid fuel at ambient con- ditions, Chem. Eng. Res. Des. 120 (2017) 271-283, https://doi.org/10.1016/j.cherd. 2017.02.025. open in new tab
  42. Z.S. Gano, F.S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, I.M. AlNashef, Extractive desulfur- ization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design, Chem. Eng. Process 93 (2015) 10-20, https://doi.org/10.1016/j.cep.2015.04.001. open in new tab
  43. X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mech- anisms of aromatic acid based deep eutectic solvents: an experimental and theoret- ical study, Chem. Eur J. 24 (2018) 11021-11032, https://doi.org/10.1002/chem. 201803229. open in new tab
  44. D.V. Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel, ACS Sustain. Chem. Eng. 6 (2018) 7525-7531, https://doi.org/10.1021/acssuschemeng.8b00224. open in new tab
  45. W. Jiang, H. Li, C. Wang, W. Liu, T. Guo, H. Liu, W. Zhu, H. Li, Synthesis of ionic-liquid- based deep eutectic solvents for extractive desulfurization of fuel, Energy Fuels 30 (2016) 8164-8170, https://doi.org/10.1021/acs.energyfuels.6b01976. open in new tab
  46. D.V. Wagle, G.A. Baker, E. Mamontov, Differential microscopic mobility of compo- nents within a deep eutectic solvent, J. Phys. Chem. Lett. 6 (2015) 2924-2928, https://doi.org/10.1021/acs.jpclett.5b01192. open in new tab
  47. Z. Li, D. Liu, Z. Men, L. Song, Y. Lv, P. Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic sol- vents: an innovative evaluation criterion to filtrate extractants using the compatibil- ity index, Green Chem. 20 (2018) 3112-3120, https://doi.org/10.1039/ C8GC00828K. open in new tab
  48. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592, https://doi.org/10.1002/jcc.22885. open in new tab
  49. T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, J. Mol. Graph. Model. 38 (2012) 314-323, https:// doi.org/10.1016/j.jmgm.2012.07.004. open in new tab
  50. E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcıa, A.J. Cohen, W. Yang, Re- vealing noncovalent interactions, J. Am. Chem. Soc. 132 (2010) 6498-6506, https:// doi.org/10.1021/ja100936w. open in new tab
  51. H.R. Lozano, F. Martínez, Thermodynamics of partitioning and solvation of ketoprofen in some organic solvent/buffer and liposome systems, Braz. J. Pharm. Sci. 42 (2006) 601-613, https://doi.org/10.1590/S1516-93322006000400016. open in new tab
  52. M. Jafari, S.L. Ebrahimi, M.R. Khosravi-Nikou, Ultrasound-assisted oxidative desul- furization and denitrogenation of liquid hydrocarbon fuels: a critical review, Ultrason. Sonochem. 40 (2018) 955-968, https://doi.org/10.1016/j.ultsonch.2017. 09.002. open in new tab
  53. C. Li, J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liua, G. Yang, Extraction desulfurization of fuels with 'metal ions' based deep eutectic solvents (MDESs), Green Chem. 18 (2016) 3789-3795, https://doi.org/10.1039/C6GC00366D. open in new tab
  54. US Patent US2050600A, Production and Purification of Diethyl Ether, 1933. open in new tab
  55. US Patent US3847756A, Recovery of Diethyl Ether from an Olefin Hydration Product Stream by Extractive Distillation with Water, 1972. open in new tab
  56. J. Yanowitz, M.A. Ratcliff, R.L. McCormick, J.D. Taylor, M.J. Murphy, Compendium of Experimental Cetane Numbers, National Renewable Energy Laboratory, 2017. https://www.nrel.gov/docs/fy17osti/67585.pdf, Accessed date: 14 January 2019. open in new tab
  57. G. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.
  58. H.S. Biswal, S. Chakraborty, S. Wategaonkar, Experimental evidence of O-H-S hy- drogen bonding in supersonic jet, J. Chem. Phys. 129 (2008) 184311, https://doi. org/10.1063/1.3012569. open in new tab
  59. H.S. Biswal, S. Wategaonkar, Sulfur, not too far behind O, N, and C: SH···π hydrogen bond, J. Phys. Chem. A 113 (2009) 12774-12782, https://doi.org/10.1021/ jp907747w. open in new tab
  60. H.S. Biswal, P.R. Shirhatti, S. Wategaonkar, O-H···O versus O-H···S hydrogen bonding I: experimental and computational studies on the p-cresol···H2O and p- cresol···H2S complexes, J. Phys. Chem. A 113 (2009) 5633-5643, https://doi.org/ 10.1021/jp9009355. open in new tab
  61. S. Bhattacharyya, A. Bhattacherjee, P.R. Shirhatti, S. Wategaonkar, OH···S hydrogen bonds conform to the acid-base formalism, J. Phys. Chem. A 117 (2013) 8238-8250, https://doi.org/10.1021/jp405414h. open in new tab
  62. S. Kumar, A. Das, Effect of acceptor heteroatoms on -hydrogen bonding interactions: a study of indolethiophene heterodimer in a supersonic jet, J. Chem. Phys. 137 (2012), 094309. https://doi.org/10.1063/1.4748818. open in new tab
  63. J.A. Platts, S.T. Howard, B.R.F. Bracke, Directionality of hydrogen bonds to sulfur and oxygen, J. Am. Chem. Soc. 118 (1996) 2726-2733, https://doi.org/10.1021/ ja952871s. open in new tab
  64. J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song, Y. Xu, Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group, J. Mol. Liq. 232 (2017) 182-187, https://doi.org/10.1016/j.molliq.2017.02.071. open in new tab
  65. W. Jiang, L. Dong, W. Liu, T. Guo, H. Li, S. Yin, W. Zhu, H. Li, Biodegradable choline- like deep eutectic solvents for extractive desulfurization of fuel, Chem. Eng. Process 115 (2017) 34-38, https://doi.org/10.1016/j.cep.2017.02.004. open in new tab
Verified by:
Gdańsk University of Technology

seen 136 times

Recommended for you

Meta Tags