Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type - Publication - Bridge of Knowledge

Search

Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type

Abstract

The paper is a continuation of [1] where the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter (the drilling degree of freedom) was presented. Here the formulation is extended to the elasto-plastic range. The material law is based on Cosserat plasticity and employs the well-known Tamura-Tomota-Ozawa (TTO) [2] mixture model with additional formulae for Cosserat material parameters. Formulation is verified by solving a set of demanding analyses of plates, curved and multi-branched shells, including geometry, thickness and material distribution variation parameter analyses.

Citations

  • 2 1

    CrossRef

  • 2 1

    Web of Science

  • 2 4

    Scopus

Cite as

Full text

download paper
downloaded 4 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
COMPOSITES PART B-ENGINEERING no. 154, pages 478 - 491,
ISSN: 1359-8368
Language:
English
Publication year:
2018
Bibliographic description:
Burzyński S., Chróścielewski J., Daszkiewicz K., Witkowski W.: Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type// COMPOSITES PART B-ENGINEERING. -Vol. 154, (2018), s.478-491
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.compositesb.2018.07.055
Bibliography: test
  1. Burzyński S, Chróścielewski J, Daszkiewicz K, Witkowski W. Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. open in new tab
  2. Compos Part B Eng 2016;107:203-13. doi:10.1016/j.compositesb.2016.09.015. open in new tab
  3. Tamura I, Tomota Y, Ozawa M. Strength and Ductility of Iron-Nickel-Carbon Alloys Composed of Austenite and Martensite with Various Strength. 3rd Int. Conf. Strength Met. Alloy., Cambridge: Institute of Metal and Iron; 1973, p. 611-5. open in new tab
  4. Shen M, Bever MB. Gradients in polymeric materials. J Mater Sci 1972;7:741-6. doi:10.1007/BF00549902. open in new tab
  5. Koizumi M. FGM activities in Japan. Compos Part B Eng 1997;28:1-4. doi:10.1016/S1359- 8368(96)00016-9. open in new tab
  6. Huang H, Han Q. Elastoplastic buckling of axially loaded functionally graded material cylindrical shells. Compos Struct 2014;117:135-42. doi:10.1016/j.compstruct.2014.06.018. open in new tab
  7. Jin ZH, Paulino GH, Dodds RH. Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng Fract Mech 2003;70:1885-912. doi:10.1016/S0013- 7944(03)00130-9. open in new tab
  8. Shabana YM, Noda N. Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration. Compos Part B Eng 2001;32:111-21. doi:10.1016/S1359-8368(00)00049-4. open in new tab
  9. Amirpour M, Das R, Bickerton S. An elasto-plastic damage model for functionally graded plates with in-plane material properties variation: Material model and numerical implementation. open in new tab
  10. Compos Struct 2017;163:331-41. doi:10.1016/j.compstruct.2016.12.020. open in new tab
  11. Baghani M, Fereidoonnezhad B. Limit analysis of FGM circular plates subjected to arbitrary rotational symmetric loads using von-Mises yield criterion. Acta Mech 2013;224:1601-8. doi:10.1007/s00707-013-0828-z. open in new tab
  12. Ghannadpour SAM, Alinia MM. Large deflection behavior of functionally graded plates under pressure loads. Compos Struct 2006;75:67-71. doi:10.1016/j.compstruct.2006.04.004. open in new tab
  13. Sharma K, Kumar D. Elastoplastic analysis of FGM plate with a central cutout of various shapes under thermomechanical loading. J Therm Stress 2017;40:1417-41. doi:10.1080/01495739.2017.1323566. open in new tab
  14. Akis T. Elastoplastic analysis of functionally graded spherical pressure vessels. Comput Mater Sci 2009;46:545-54. doi:10.1016/j.commatsci.2009.04.017. open in new tab
  15. Arciniega RA, Reddy JN. Large deformation analysis of functionally graded shells. Int J Solids Struct 2007;44:2036-52. doi:10.1016/j.ijsolstr.2006.08.035. open in new tab
  16. Han SC, Lee WH, Park WT. Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element. Compos Struct 2009;89:8-19. doi:10.1016/j.compstruct.2008.08.006. open in new tab
  17. Zhang Y, Huang H, Han Q. Buckling of elastoplastic functionally graded cylindrical shells under combined compression and pressure. Compos Part B Eng 2015;69:120-6. doi:10.1016/j.compositesb.2014.09.024. open in new tab
  18. Zhang DG, Zhou HM. Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct 2015;89:142-51. doi:10.1016/j.tws.2014.12.021. open in new tab
  19. Taczała M, Buczkowski R, Kleiber M. Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments. Compos Part B Eng 2017;109:238-47. doi:10.1016/j.compositesb.2016.09.023. open in new tab
  20. Huang H, Chen B, Han Q. Investigation on buckling behaviors of elastoplastic functionally graded cylindrical shells subjected to torsional loads. Compos Struct 2014;118:234-40. doi:10.1016/j.compstruct.2014.07.025. open in new tab
  21. Woo J, Meguid SA. Nonlinear analysis of functionally graded plates and shallow shells. Int J Solids Struct 2001;38:7409-21. doi:10.1016/S0020-7683(01)00048-8. open in new tab
  22. Fazzolari FA. Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations. Compos Part B Eng 2018;136:254-71. doi:10.1016/j.compositesb.2017.10.022. open in new tab
  23. Nguyen TT, Lee J. Optimal design of thin-walled functionally graded beams for buckling problems. Compos Struct 2017;179:459-67. doi:10.1016/j.compstruct.2017.07.024. open in new tab
  24. Rizov V. Delamination fracture in a functionally graded multilayered beam with material nonlinearity. Arch Appl Mech 2017;87:1037-48. doi:10.1142/S0219455418500517. open in new tab
  25. Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E. Stress , vibration and buckling analyses of FGM plates -A state-of-the-art review. Compos Struct 2015;120:10-31. doi:10.1016/j.compstruct.2014.09.070. open in new tab
  26. Jha DK, Kant T, Singh RK. A critical review of recent research on functionally graded plates. open in new tab
  27. Compos Struct 2013;96:833-49. doi:10.1016/j.compstruct.2012.09.001. open in new tab
  28. Birman V, Byrd LW. Modeling and analysis of functionally graded materials and structures. open in new tab
  29. ASME Appl Mech Rev 2007;60:195-216. doi:10.1115/1.2777164. open in new tab
  30. Fazzolari FA. Reissner's Mixed Variational Theorem and variable kinematics in the modelling of laminated composite and FGM doubly-curved shells. Compos Part B Eng 2016;89:408-23. doi:10.1016/j.compositesb.2015.11.031. open in new tab
  31. Tornabene F, Fantuzzi N, Bacciocchi M, Reddy J. An Equivalent Layer-Wise Approach for the open in new tab
  32. Free Vibration Analysis of Thick and Thin Laminated and Sandwich Shells. Appl Sci 2016;7:17. doi:10.3390/app7010017. open in new tab
  33. Tornabene F, Brischetto S, Fantuzzi N, Bacciocchi M. Boundary conditions in 2D numerical and 3D exact models for cylindrical bending analysis of functionally graded structures. Shock Vib 2016;2016. doi:10.1155/2016/2373862. open in new tab
  34. Tornabene F, Fantuzzi N, Bacciocchi M. Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories. Compos Part B Eng 2014;67:490-509. doi:10.1016/j.compositesb.2014.08.012. open in new tab
  35. Williamson RL, Rabin BH, Drake JT. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. J Appl Phys 1993;74:1310-20. doi:10.1063/1.354910. open in new tab
  36. Drake JT, Williamson RL, Rabin BH. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. J Appl Phys 1993;74:1321-6. doi:10.1063/1.354911. open in new tab
  37. Aboudi J, Pindera M-J, Arnold SM. Thermo-inelastic response of functionally graded composites. open in new tab
  38. Int J Solids Struct 1995;32:1675-710. doi:10.1016/0020-7683(94)00201-7. open in new tab
  39. Weissenbek E, Pettermann HE, Suresh S. Elasto-plastic deformation of compositionally graded metal-ceramic composites. Acta Mater 1997;45:3401-17. doi:10.1016/S1359-6454(96)00403-X. open in new tab
  40. Nakamura T, Wang T, Sampath S. Determination of Properties of Graded Materials. Acta Metall 2000;48:4293-306. open in new tab
  41. Gu Y, Nakamura T, Prchlik L, Sampath S, Wallace J. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials. Mater Sci Eng A 2003;345:223-33. doi:10.1016/S0921-5093(02)00462-8. open in new tab
  42. Gunes R, Aydin M, Apalak MK, Reddy JN. The elasto-plastic impact analysis of functionally graded circular plates under low-velocities. Compos Struct 2011;93:860-9. doi:10.1016/j.compstruct.2010.07.008. open in new tab
  43. Gunes R, Aydin M, Kemal Apalak M, Reddy JN. Experimental and numerical investigations of low velocity impact on functionally graded circular plates. Compos Part B Eng 2014;59:21-32. doi:10.1016/j.compositesb.2013.11.022. open in new tab
  44. Kalali AT, Hassani B, Hadidi-Moud S. Elastic-plastic analysis of pressure vessels and rotating disks made of functionally graded materials using the isogeometric approach. J Theor Appl Mech 2016:113. doi:10.15632/jtam-pl.54.1.113. open in new tab
  45. Sharma K, Kumar D. Elastoplastic stability and failure analysis of FGM plate with temperature dependent material properties under thermomechanical loading. Lat Am J Solids Struct 2017;14:1361-86. doi:10.1590/1679-78253747. open in new tab
  46. Zhang DG, Zhou HM. Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations. Thin-Walled Struct 2015;89:142-51. doi:10.1016/j.tws.2014.12.021. open in new tab
  47. Huang H, Zhang Y, Han Q. Inelastic Buckling of FGM Cylindrical Shells Subjected to Combined Axial and Torsional Loads. Int J Struct Stab Dyn 2017;17:1771010. doi:10.1142/S0219455417710109. open in new tab
  48. Xu G, Huang H, Chen B, Chen F. Buckling and postbuckling of elastoplastic FGM plates under inplane loads. Compos Struct 2017;176:225-33. doi:10.1016/j.compstruct.2017.04.061. open in new tab
  49. Kleiber M, Taczała M, Buczkowski R. Elasto-Plastic Response of Thick Plates Built in Functionally Graded Material Using the Third Order Plate Theory. Adv. Comput. Plast., vol. 46, 2018, p. 185-99. doi:10.1007/978-3-319-60885-3. open in new tab
  50. Amirpour M, Das R, Saavedra Flores EI. Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory. Compos Part B Eng 2016;94:109-21. doi:10.1016/j.compositesb.2016.03.040. open in new tab
  51. Reissner E. Linear and nonlinear theory of shells. In: Fung YC, Sechler EE, editors. Thin Shell Struct., Englewood Cliffs: Prentice-Hall; 1974, p. 29-44.
  52. Libai A, Simmonds JG. The Nonlinear Theory of Elastic Shells. Cambridge: Cambridge University Press; 1998. open in new tab
  53. Chróścielewski J, Makowski J, Pietraszkiewicz W. Statyka i Dynamika Powłok Wielopłatowych. Nieliniowa teoria i metoda elementów skończonych. Warszawa: Wydawnictwo IPPT PAN; 2004.
  54. Chróścielewski J, Sabik A, Sobczyk B, Witkowski W. Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory. Thin-Walled Struct 2016;105:207-19. doi:10.1016/j.tws.2016.03.024. open in new tab
  55. Nowacki W. Couple-stresses in the theory of thermoelasticity. In: Parkus H, Sedov LI, editors. Irreversible Asp. Contin. Mech. Transf. Phys. Charact. Mov. fluids. IUTAM Symp. Vienna 1966, Wien: Springer-Verlag; 1968, p. 259-78. open in new tab
  56. Eringen AC. Microcontinuum Field Theories. I. Foundations and Solids. New York: Springer- Verlag; 1999. open in new tab
  57. Altenbach J, Altenbach H, Eremeyev VA. On generalized Cosserat-type theories of plates and shells: A short review and bibliography. Arch Appl Mech 2010;80:73-92. doi:10.1007/s00419- 009-0365-3. open in new tab
  58. Chróścielewski J, Makowski J, Stumpf H. Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 1992;35:63-94. doi:10.1002/nme.1620350105. open in new tab
  59. Chróścielewski J, Kreja I, Sabik A, Witkowski W. Modeling of composite shells in 6-parameter nonlinear theory with drilling degree of freedom. Mech Adv Mater Struct 2011;18:403-19. doi:10.1080/15376494.2010.524972. open in new tab
  60. Burzyński S, Chróścielewski J, Witkowski W. Geometrically nonlinear FEM analysis of 6- parameter resultant shell theory based on 2-D Cosserat constitutive model. ZAMM -J Appl Math Mech / Zeitschrift Für Angew Math Und Mech 2016;96:191-204. doi:10.1002/zamm.201400092. open in new tab
  61. Burzyński S, Chroscielewski J, Witkowski W. Elastoplastic law of Cosserat type in shell theory with drilling rotation. Math Mech Solids 2015;20:790-805. doi:10.1177/1081286514554351. open in new tab
  62. Neto EA de S, Peric D, Owen DRJ. Computational Methods for Plasticity: Theory and Applications. 2009. doi:10.1002/9780470694626. open in new tab
  63. Daszkiewicz K, Chróścielewski J, Witkowski W. Geometrically Nonlinear Analysis of Functionally Graded Shells Based on 2-D Cosserat Constitutive Model. Eng Trans 2014;62:109- 30. open in new tab
  64. Tornabene F, Fantuzzi N, Bacciocchi M. Mechanical behaviour of composite Cosserat solids in elastic problems with holes and discontinuities. Compos Struct 2017;179:468-81. doi:10.1016/j.compstruct.2017.07.087. open in new tab
  65. Fantuzzi N, Leonetti L, Trovalusci P, Tornabene F. Some Novel Numerical Applications of Cosserat Continua. Int J Comput Methods 2017;15:1-38. doi:10.1142/S0219876218500548. open in new tab
  66. Tang H, Sun F, Zhang Y, Dong Y. Elastoplastic axisymmetric Cosserat continua and modelling of strain localization. Comput Geotech 2018;101:159-67. doi:10.1016/j.compgeo.2018.05.004. open in new tab
  67. Godio M, Stefanou I, Sab K, Sulem J. Multisurface plasticity for Cosserat materials: Plate element implementation and validation. Int J Numer Methods Eng 2016;108:456-84. doi:10.1002/nme.5219. open in new tab
  68. Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press; 1986. open in new tab
  69. Jeong J, Ramezani H, Münch I, Neff P. A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature. ZAMM Zeitschrift Fur Angew Math Und Mech 2009;89:552-69. doi:10.1002/zamm.200800218. open in new tab
  70. de Borst R. Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 1991;8:317-32. open in new tab
  71. Nowacki W. Teoria niesymetrycznej sprężystości. Warszawa: IPPT PAN; 1971.
  72. Simo JC, Hughes TJR. Computational Inelasticity. Springer-Verlag New York, Inc.; 1998. open in new tab
  73. Belytschko T, Liu N-W, Moran B. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Ltd.; 2003.
  74. Timoshenko S, Gere JM. Theory of elastic stability. 2nd ed. New York: McGraw-Hill; 1961. open in new tab
  75. Wunderlich W, Stein E, Bathe KJ. Nonlinear Finite Element Analysis in Structural Mechanics. Springer; 1981. open in new tab
  76. Kołakowski Z. Some aspects of dynamic interactive buckling of composite columns. Thin-Walled Struct 2007;45:866-71. doi:10.1016/j.tws.2007.08.008. open in new tab
  77. Iwicki P, Tejchman J, Chróścielewski J. Dynamic FE simulations of buckling process in thin- walled cylindrical metal silos. Thin-Walled Struct 2014;84:344-59. doi:10.1016/j.tws.2014.07.011. open in new tab
  78. Kolakowski Z, Kubiak T. Interactive dynamic buckling of orthotropic thin-walled channels subjected to in-plane pulse loading. Compos Struct 2007;81:222-32. doi:10.1016/j.compstruct.2006.08.012. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 97 times

Recommended for you

Meta Tags