Electric and magnetic properties of Lanthanum Barium Cobaltite - Publication - Bridge of Knowledge

Search

Electric and magnetic properties of Lanthanum Barium Cobaltite

Abstract

The cubic Ba0.5La0.5CoO3‐δ was synthesized using solid state reaction. The structural properties were determined by the simultaneous refinement of Synchrotron Powder X‐ray Diffraction and Neutron Powder Diffraction data. Iodometric titration was used to examine the oxygen stoichiometry and average cobalt oxidation state. Low‐temperature magnetic studies show soft ferromagnetic character of fully oxidized material, with θP = 198(3) K and μeff = 2.11(2) μB. Electric measurements show the thermally activated nature of conductivity at low temperatures, whereas, due to the variable oxidation and spin state of cobalt, a single charge transport mechanism cannot be distinguished. Around room temperature, a wide transition from thermally activated conductivity to semi‐metallic behavior is observed. Under the inert atmos-phere, the oxygen content lowers and the cation ordering takes place, leading to coex-istence of two, ordered and disordered, phases. As a result of this change, thermally activated conductivity is observed also at high temperatures in inert atmosphere.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Cite as

Full text

download paper
downloaded 78 times
Publication version
Accepted or Published Version
License
Copyright (2019 The American Ceramic Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF THE AMERICAN CERAMIC SOCIETY no. 103, pages 1809 - 1818,
ISSN: 0002-7820
Language:
English
Publication year:
2020
Bibliographic description:
Szpunar I., Wachowski S. L., Miruszewski T., Dzierzgowski K., Górnicka K., Klimczuk T., Sorby M., Balaguer M., Serra J., Strandbakke R., Mielewczyk-Gryń A. D., Gazda M.: Electric and magnetic properties of Lanthanum Barium Cobaltite// JOURNAL OF THE AMERICAN CERAMIC SOCIETY -Vol. 103,iss. 3 (2020), s.1809-1818
DOI:
Digital Object Identifier (open in new tab) 10.1111/jace.16865
Bibliography: test
  1. Ivanova NB, Ovchinnikov SG, Korshunov MM, Eremin IM, Kazak N V. Specific features of spin, charge, and orbital ordering in cobaltites. Physics-Uspekhi. 2009;52(8):789-810. open in new tab
  2. Nakajima T, Ichihara M, Ueda Y. New A-site ordered perovskite cobaltite LaBaCo2O6: Synthesis, structure, physical property and cation order-disorder effect. J Phys Soc Japan. 2005;74(5):1572-7. open in new tab
  3. Strandbakke R, Cherepanov VA, Zuev AY, Tsvetkov DS, Argirusis C, Sourkouni G, et al. Gd-and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics. 2015;278:120-32. open in new tab
  4. Frontera C, Caneiro A, Carrillo AE, Oró-Solé J, García-Muñoz JL. Tailoring oxygen content on PrBaCo2O5+δ layered cobaltites. Chem Mater. 2005;17(22):5439-45. open in new tab
  5. Fauth F, Suard E, Caignaert V, Domengès B, Mirebeau I, Keller L. Interplay of structural, magnetic and transport properties in thelayered Co-based perovskite LnBaCo 2 O 5 (Ln = Tb, Dy, Ho). Eur Phys J B. 2001;21(2):163-74. open in new tab
  6. Luo W, Wang F. Powder X-ray diffraction and Rietveld analysis of La1−xBaxCoO3 (0<x≤0.5). Powder Diffr. 2006;21(04):304-6. open in new tab
  7. Pang S, Jiang X, Li X, Su Z, Xu H, Xu Q, et al. Characterization of cation-ordered perovskite oxide LaBaCo 2O5+δ as cathode of intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy. 2012;37(8):6836-43. open in new tab
  8. Pang S, Jiang X, Li X, Wang Q, Su Z. A comparative study of electrochemical performance of La0.5Ba0.5CoO3-δand La0.5Ba0.5CoO3-δ- Gd0.1Ce0.9O1.95cathodes. Int J Hydrogen Energy. 2012;37(3):2157-65.
  9. Bernuy-Lopez C, Høydalsvik K, Einarsrud M-A, Grande T. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+ δ Double Perovskite. Materials (Basel). 2016;9(3):154. open in new tab
  10. Garcés D, Setevich CF, Caneiro A, Cuello GJ, Mogni L. Effect of cationic order- disorder on the transport properties of LaBaCo2O6-δ and La0.5Ba 0.5CoO3-δ perovskites. J Appl Crystallogr. 2014;47(1):325-34. open in new tab
  11. Pang SL, Jiang XN, Li XN, Wang Q, Zhang QY. Structural stability and high- temperature electrical properties of cation-ordered/disordered perovskite LaBaCoO. Mater Chem Phys. 2012;131(3):642-6. open in new tab
  12. Suard E, Fauth F, Caignaert V. Rhombohedral distortion in the new disordered LaBaCo2O6perovskite. Phys B Condens Matter. 2000;276-278:254-5. open in new tab
  13. Goupil G, Delahaye T, Sala B, Lefebvre Joud F, Gauthier G. Selection and study of basic layered cobaltites as mixed ionic-electronic conductors for proton conducting fuel cells. Solid State Ionics. 2014;263:15-22. open in new tab
  14. Masuda H, Fujita T, Miyashita T, Soda M, Yasui Y, Kobayashi Y, et al. Transport and Magnetic Properties of R<SUB>1&minus;<I>x</I></SUB>A<I><SUB>x</SUB></I>CoO<SUB>3</SUB> (R = La, Pr and Nd;
  15. A = Ba, Sr and Ca). J Phys Soc Japan. 2003;72(4):873-8.
  16. Dyadkin V, Pattison P, Dmitriev V, Chernyshov D, IUCr. A new multipurpose diffractometer PILATUS@SNBL. J Synchrotron Radiat. 2016;23(3):825-9. open in new tab
  17. Hauback B, Fjellvåg H, Steinsvoll O, Johansson K, Buset OT, Jørgensen J. The high resolution Powder Neutron Diffractometer PUS at the JEEP II reactor at Kjeller in Norway. J Neutron Res. 2000;8(3):215-32. open in new tab
  18. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65-71. open in new tab
  19. Fauth F, Suard E, Caignaert V. Intermediate spin state of Co 3 + and Co 4 + ions in La 0.5 open in new tab
  20. CoO 3 evidenced by Jahn-Teller distortions. open in new tab
  21. Phys Rev B. 2001;65(6):060401. open in new tab
  22. Raveau B, Seikh MM. Magnetic and Physical Properties of Cobalt Perovskites. Vol. 23, Handbook of Magnetic Materials. Elsevier; 2015. 161-289 p. open in new tab
  23. Radaelli PG, Cheong SW. Structural phenomena associated with the spin-state transition in (formula presented). Phys Rev B -Condens Matter Mater Phys. 2002;66(9):1-9. open in new tab
  24. Lamonova K V., Zhitlukhina ES, Babkin RY, Orel SM, Ovchinnikov SG, Pashkevich YG. Intermediate-spin state of a 3D ion in the octahedral environment and generalization of the Tanabe -Sugano diagrams. J Phys Chem A. 2011;115(46):13596-604. open in new tab
  25. Toulemonde O, N'Guyen N, Studer F, Traverse A. Spin State Transition in LaCoO3 with Temperature or Strontium Doping as Seen by XAS. J Solid State Chem. 2001 May;158(2):208-17. open in new tab
  26. Troyanchuk IO, Bushinsky M V., Sikolenko V V., Ritter C. Spin Crossover and Magnetic Properties of Ba-Substituted Cobaltites. J Exp Theor Phys. 2019;128(1):98-104. open in new tab
  27. Kumar D, Banerjee A. Coexistence of interacting ferromagnetic clusters and small antiferromagnetic clusters in La0.5Ba0.5CoO3. J Phys Condens Matter. 2013 [cited 2018;25(21):216005-9. open in new tab
  28. Rautama E-L, Boullay P, Kundu AK, Caignaert V, Pralong V, Karppinen M, et al. Cationic Ordering and Microstructural Effects in the Ferromagnetic Perovskite La 0.5 Ba 0.5 CoO 3 : Impact upon Magnetotransport Properties. Chem Mater. 2008 20(8):2742-50. open in new tab
  29. Efros AL, Shklovskii BI. Coulomb gap and low temperature conductivity of disordered systems. J Phys C Solid State Phys. 1975;8(4). open in new tab
  30. Mott NF. Conduction in glasses containing transition metal ions. J Non Cryst Solids. 1968;1(1):1-17. open in new tab
  31. Phelan D, Yu J, Louca D. Jahn-Teller spin polarons in perovskite cobaltites. Phys Rev B. 2008 Sep;78(9):094108. open in new tab
  32. Fauth F, Suard E, Caignaert V, Domengès B, Mirebeau I, Keller L. Interplay of structural, magnetic and transport properties in thelayered Co-based perovskite LnBaCo 2 O 5 (Ln = Tb, Dy, Ho). Eur Phys J B. 2001;21(2):163-74. open in new tab
  33. Ambegaokar V, Halperin BI, Langer JS. Theory of hopping conductivity in disordered systems. J Non Cryst Solids. 1972;8-10(C):492-6. open in new tab
  34. Raveau B (Bernard), Seikh MM. Cobalt oxides : from crystal chemistry to physics. Wiley-VCH; 2012. 333 p. open in new tab
  35. Maria J, Nazir S, Alay-E-Abbas SM, Shaukat A. Half-metallic ferromagnetism in ordered LaBaCo2O6and disordered La0.5Ba0.5CoO3: DFT+U study. J Magn Magn Mater. 2014;368:230-3. open in new tab
  36. Malyshkin D, Novikov A, Tsvetkov D, Zuev A. Preparation, oxygen nonstoichiometry and defect structure of double perovskite LaBaCo2O6-δ. Mater Lett. 2018;229:324-6. open in new tab
  37. Malyshkin DA, Novikov AY, Sereda V V., Ivanov IL, Tsvetkov DS, Zuev AY. In Situ and ex Situ Study of Cubic La 0.5 Ba 0.5 CoO 3−δ to Double Perovskite LaBaCo 2 O 6−δ Transition and Formation of Domain Textured Phases with Fast Oxygen Exchange Capability. Inorg Chem. 2018;57(19):12409-16. open in new tab
  38. Bernuy-Lopez C, Rioja-Monllor L, Nakamura T, Ricote S, O'Hayre R, Amezawa K, et al. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes. Materials (Basel). 2018;11(2):196. open in new tab
  39. Bausá N, Solís C, Strandbakke R, Serra JM, Bausa Nuria, Solis Cecilia, Strandbakke Ragnar SJM, Bausá N, et al. Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ionics. 2017 Aug;306:62-8. open in new tab
Verified by:
Gdańsk University of Technology

seen 157 times

Recommended for you

Meta Tags