Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes - Publication - Bridge of Knowledge

Search

Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes

Abstract

This work evaluates porous Sr0.86Ti0.65Fe0.35O3 (STF35) as a possible oxygen electrode material for Solid Oxide Cells. The powder synthesis was performed by solid state method. Characterization included DC electrical conductivity study of sintered bulk samples and impedance spectroscopy study of symmetrical electrodes deposited on gadolinium doped ceria substrates. Measurements were carried out in atmospheres with different pO2 levels: 0.1%–20% O2. Detailed equivalent circuit analysis was carried out in order to clarify the reaction pathway on porous electrode, which extends knowledge available for dense model electrodes. At 800 °C in 21% O2, the DC electrical conductivity of STF35 pellet was 0.6 S cm−1 and the polarization resistance of the electrode in the symmetrical cell was ∼100 mΩ cm2. Detailed impedance spectroscopy studies revealed that the largest contribution (∼80%) towards the polarization resistance is due to oxygen adsorption, which is limiting the oxygen reduction performance of the porous STF35 electrode. These results show the applicability of advanced impedance analysis methods (e.g. Distribution of Relaxation Times - DRT) for description of complex impedance electrode phenomena of porous electrodes.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 1

    Scopus

Cite as

Full text

download paper
downloaded 150 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY no. 44, pages 1827 - 1838,
ISSN: 0360-3199
Language:
English
Publication year:
2019
Bibliographic description:
Mroziński A., Molin S., Karczewski J., Miruszewski T., Jasiński P.: Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes// INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. -Vol. 44, nr. 3 (2019), s.1827-1838
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijhydene.2018.11.203
Bibliography: test
  1. da Silva FS, de Souza TM. Novel materials for solid oxide fuel cell technologies: A literature review. Int J Hydrogen Energy 2017;42:26020-36. doi:10.1016/j.ijhydene.2017.08.105. open in new tab
  2. Goodenough JB, Huang Y-H. Alternative anode materials for solid oxide fuel cells. J Power Sources 2007;173:1-10. doi:10.1016/j.jpowsour.2007.08.011. open in new tab
  3. Tian Y, Li J, Liu Y, Yang J, Liu B, Jia L, et al. Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+Δas novel oxygen electrode for reversible solid oxide electrochemical cell. Int J Hydrogen Energy 2018;43:12603-9. doi:10.1016/j.ijhydene.2018.03.187. open in new tab
  4. Sarno C, Luisetto I, Zurlo F, Licoccia S, Di Bartolomeo E. Lanthanum chromite based composite anodes for dry reforming of methane. Int J Hydrogen Energy 2018;43:14742-50. doi:10.1016/j.ijhydene.2018.06.021. open in new tab
  5. Bochentyn B, Karczewski J, Molin S, Klimczuk T, Gazda M, Jasinski P, et al. The comparison of SrTi 0.98Nb 0.02O 3-δ-CeO 2 and SrTi 0.98Nb 0.02O 3-δ-YSZ composites for use in SOFC anodes. J Electroceramics 2012;28. doi:10.1007/s10832-012-9693-8. open in new tab
  6. Barfod R, Mogensen M, Klemenso̸ T, Hagen A, Liu Y-L, Vang Hendriksen P. Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy. J Electrochem Soc 2007;154:B371. doi:10.1149/1.2433311. open in new tab
  7. Hagen A, Liu YL, Barfod R, Hendriksen P V. Assessment of the Cathode Contribution to the Degradation of Anode-Supported Solid Oxide Fuel Cells. J Electrochem Soc 2008;155:B1047. doi:10.1149/1.2960938. open in new tab
  8. Niemczyk A, Olszewska A, Du Z, Zhang Z, Świerczek K, Zhao H. Assessment of layered La2- x(Sr,Ba)xCuO4-δoxides as potential cathode materials for SOFCs. Int J Hydrogen Energy 2018;3. doi:10.1016/j.ijhydene.2018.06.119. open in new tab
  9. Molenda J, Kupecki J, Baron R, Blesznowski M, Brus G, Brylewski T, et al. Status report on high temperature fuel cells in Poland -Recent advances and achievements. Int J Hydrogen Energy 2017;42:4366-403. doi:10.1016/j.ijhydene.2016.12.087. open in new tab
  10. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, et al. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C. Adv Mater 2017;1700132:1700132. doi:10.1002/adma.201700132. open in new tab
  11. Sunarso J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. Prog Energy Combust Sci 2017;61:57-77. doi:10.1016/j.pecs.2017.03.003. open in new tab
  12. Gazda M, Jasinski P, Kusz B, Bochentyn B, Gdula-Kasica K, Lendze T, et al. Perovskites in solid oxide fuel cells. vol. 183. 2012. doi:10.4028/www.scientific.net/SSP.183.65. open in new tab
  13. Weber A, Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J Power Sources 2004;127:273-83. doi:10.1016/j.jpowsour.2003.09.024. open in new tab
  14. Haile SM. Fuel cell materials and components. Acta Mater 2003;51:5981-6000. doi:10.1016/j.actamat.2003.08.004. open in new tab
  15. Bochentyn B, Karczewski J, Miruszewski T, Krupa A, Gazda M, Jasinski P, et al. Donor- substituted SrTi1 + xO3 -δanodes for SOFC. Solid State Ionics 2012;225:118-23. doi:10.1016/j.ssi.2012.05.015. open in new tab
  16. Sarin N, Mishra M, Gupta G, Parkin IP, Luthra V. Elucidating iron doping induced n-to p- characteristics of Strontium titanate based ethanol sensors. Curr Appl Phys 2018;18:246-53. doi:10.1016/j.cap.2017.11.007. open in new tab
  17. Litzelman SJ, Rothschild A, Tuller HL. The electrical properties and stability of SrTi0.65Fe0.35O3−δ thin films for automotive oxygen sensor applications. Sensors Actuators B Chem 2005;108:231-7. doi:10.1016/j.snb.2004.10.040. open in new tab
  18. Jung W, Tuller HL. Investigation of Cathode Behavior of Model Thin-Film SrTi[sub 1 - x]Fe[sub x]O[sub 3 -delta] (x = 0.35 and 0.5) Mixed Ionic-Electronic Conducting Electrodes. J Electrochem Soc 2008;155:B1194-201. doi:10.1149/1.2976212. open in new tab
  19. Jung W, Tuller HL. Impedance study of SrTi(1-x)Fe(x)O(3-delta) (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode. Solid State Ionics 2009;180:843-7. doi:10.1016/j.ssi.2009.02.008. open in new tab
  20. Perry NH, Kim JJ, Tuller HL. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O 3-x thin film case study. Sci Technol Adv Mater 2018;19:130-41. doi:10.1080/14686996.2018.1430448. open in new tab
  21. Rothschild A, Menesklou W, Tuller HL, Ivers-Tiffée E. Electronic structure, defect chemistry, and transport properties of SrTi 1-xFe xO 3-y solid solutions. Chem Mater 2006;18:3651-9. doi:10.1021/cm052803x. open in new tab
  22. Argirusis C, Jomard F, Wagner SF, Menesklou W, Ivers-Tiffée E. Study of the oxygen incorporation and diffusion in Sr(Ti 0.65Fe0.35)O3 ceramics. Solid State Ionics 2011;192:9- 11. doi:10.1016/j.ssi.2010.02.016. open in new tab
  23. Jung W, Tuller HL. Impedance study of SrTi1-xFexO3-δ (x = 0.05 to 0.80) mixed ionic- electronic conducting model cathode. Solid State Ionics 2009;180:843-7. doi:10.1016/j.ssi.2009.02.008. open in new tab
  24. Song J-L, Guo X. SrTi0.65Fe0.35O3 nanofibers for oxygen sensing. Solid State Ionics 2015;278:26-31. doi:10.1016/j.ssi.2015.05.009. open in new tab
  25. Li HY, Yang H, Guo X. Oxygen sensors based on SrTi0.65Fe0.35O3-δthick film with MgO diffusion barrier for automotive emission control. Sensors Actuators, B Chem 2015;213:102- 10. doi:10.1016/j.snb.2015.02.079. open in new tab
  26. Nenning A, Volgger L, Miller E, Mogni L V., Barnett S, Fleig J. The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells. J Electrochem Soc 2017;164:F364-71. doi:10.1149/2.1271704jes. open in new tab
  27. Oliveira Silva R, Malzbender J, Schulze-Küppers F, Baumann S, Guillon O. Mechanical properties and lifetime predictions of dense SrTi1-xFexO3-δ(x = 0.25, 0.35, 0.5). J Eur Ceram Soc 2017;37:2629-36. doi:10.1016/j.jeurceramsoc.2017.02.038. open in new tab
  28. Oliveira Silva R, Malzbender J, Schulze-Küppers F, Baumann S, Krüger M, Guillon O. Microstructure and anisotropic mechanical properties of freeze dried SrTi 0.75 Fe 0.25 O 3-δ for oxygen transport membrane substrates. J Eur Ceram Soc 2018;38:2774-83. doi:10.1016/j.jeurceramsoc.2018.02.014. open in new tab
  29. Liu Y, Baumann S, Schulze-Küppers F, Mueller DN, Guillon O. Co and Fe co-doping influence on functional properties of SrTiO3for use as oxygen transport membranes. J Eur Ceram Soc 2018;38:5058-66. doi:10.1016/j.jeurceramsoc.2018.07.037. open in new tab
  30. Baharuddin NA, Muchtar A, Somalu MR. Short review on cobalt-free cathodes for solid oxide fuel cells. Int J Hydrogen Energy 2017;42:9149-55. doi:10.1016/j.ijhydene.2016.04.097. open in new tab
  31. Liu H, Zhu K, Liu Y, Li W, Cai L, Zhu X, et al. Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2018;279:224-30. doi:10.1016/j.electacta.2018.05.086. open in new tab
  32. Rothschild A, Litzelman SJ, Tuller HL, Menesklou W, Schneider T, Ivers-Tiffée E. Temperature-independent resistive oxygen sensors based on SrTi1-xFexO3-δsolid solutions. Sensors Actuators, B Chem 2005;108:223-30. doi:10.1016/j.snb.2004.09.044. open in new tab
  33. Jung W, Tuller HL. Investigation of Cathode Behavior of Model Thin-Film SrTi[sub open in new tab
  34. −x]Fe[sub x]O[sub 3−δ] (x=0.35 and 0.5) Mixed Ionic-Electronic Conducting Electrodes. J Electrochem Soc 2008;155:B1194. doi:10.1149/1.2976212. open in new tab
  35. Jung W, Tuller HL. Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ Sci 2012;5:5370-8. doi:10.1039/C1EE02762J. open in new tab
  36. Jung W, Tuller HL. A New Model Describing Solid Oxide Fuel Cell Cathode Kinetics: Model Thin Film SrTi1-xFexO3-δ Mixed Conducting Oxides-a Case Study. Adv Energy Mater 2011;1:1184-91. doi:10.1002/aenm.201100164. open in new tab
  37. Yoo C-Y, Bouwmeester HJM. Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Phys Chem Chem Phys 2012;14:11759. doi:10.1039/c2cp41923h. open in new tab
  38. Molin S, Lewandowska-Iwaniak W, Kusz B, Gazda M, Jasinski P. Structural and electrical properties of Sr(Ti, Fe)O3-δ materials for SOFC cathodes. J Electroceramics 2012;28:80-7. doi:10.1007/s10832-012-9683-x. open in new tab
  39. Jordan N, Assenmacher W, Uhlenbruck S, Haanappel VAC, Buchkremer HP, Stöver D, et al. Ce0.8Gd0.2O2 − δ protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ionics 2008;179:919-23. doi:10.1016/j.ssi.2007.12.008. open in new tab
  40. Wang F, Nishi M, Brito ME, Kishimoto H, Yamaji K, Yokokawa H, et al. Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs). J Power Sources 2014;258:281-9. doi:10.1016/j.jpowsour.2014.02.046. open in new tab
  41. Szymczewska D, Karczewski J, Chrzan A, Jasinski P. CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells. Solid State Ionics 2017;302:113-7. doi:10.1016/j.ssi.2016.11.008. open in new tab
  42. Li Y, Gemmen R, Liu X. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. J Power Sources 2010;195:3345-58. doi:10.1016/j.jpowsour.2009.12.062. open in new tab
  43. Baumann FS, Fleig J, Cristiani G, Stuhlhofer B, Habermeier H-U, Maier J. Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes. J Electrochem Soc 2007;154:B931. doi:10.1149/1.2752974. open in new tab
  44. Metlenko V, Jung W, Bishop SR, Tuller HL, De Souza RA. Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi 1−y Fe y O 3−δ. Phys Chem Chem Phys 2016;18:29495-505. doi:10.1039/C6CP05756J. open in new tab
  45. Perry NH, Harrington GF, Tuller HL. Electrochemical ionic interfaces. Elsevier Inc.; 2018. doi:10.1016/B978-0-12-811166-6.00004-2. open in new tab
  46. Degen T, Sadki M, Bron E, König U, Nénert G. The high score suite. Powder Diffr 2014;29:S13-8. doi:10.1017/S0885715614000840. open in new tab
  47. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44:1272-6. doi:10.1107/S0021889811038970. open in new tab
  48. Koch S, Graves C, Hansen KV. Elchemea Analytical (Open source free software) http://www.elchemea.dk/ n.d. open in new tab
  49. Ciucci F, Chen C. Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach. Electrochim Acta 2015;167:439-54. doi:10.1016/j.electacta.2015.03.123. open in new tab
  50. Saccoccio M, Wan TH, Chen C, Ciucci F. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: Ridge and Lasso regression methods -A theoretical and experimental Study. Electrochim Acta 2014;147:470-82. doi:10.1016/j.electacta.2014.09.058. open in new tab
  51. Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Electrochim Acta 2015;184:483-99. doi:10.1016/j.electacta.2015.09.097. open in new tab
  52. Ba¨urer M, Kungl H, Hoffmann MJ. Influence of sr/ti stoichiometry on the densification behavior of strontium titanate. J Am Ceram Soc 2009;92:601-6. doi:10.1111/j.1551- 2916.2008.02920.x. open in new tab
  53. Horikiri F, Iizawa N, Han LQ, Sato K, Yashiro K, Kawada T, et al. Defect equilibrium and electron transport in the bulk of single crystal SrTi1 -xNbxO3(x = 0.01, 0.001, 0.0002). Solid State Ionics 2008;179:2335-44. doi:10.1016/j.ssi.2008.10.001. open in new tab
  54. Horikiri F, Han L, Iizawa N, Sato K, Yashiro K, Kawada T, et al. Electrical Properties of Nb- Doped SrTiO[sub 3] Ceramics with Excess TiO[sub 2] for SOFC Anodes and Interconnects. J Electrochem Soc 2008;155:B16. doi:10.1149/1.2799733. open in new tab
  55. Acharya SK, Nallagatla RV, Togibasa O, Lee BW, Liu C, Jung CU, et al. Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory. ACS Appl Mater Interfaces 2016;8:7902-11. doi:10.1021/acsami.6b00647. open in new tab
  56. Lytle FW. X-ray diffractometry of low-temperature phase transformations in strontium titanate. J Appl Phys 1964;35:2212-5. doi:10.1063/1.1702820. open in new tab
  57. Kharton V V., Kovalevsky A V., Viskup AP, Jurado JR, Figueiredo FM, Naumovich EN, et al. Transport properties and thermal expansion of Sr0.97Ti1-xFexO3-δ(x = 0.2-0.8). J Solid State Chem 2001;156:437-44. doi:10.1006/jssc.2000.9019. open in new tab
  58. Kharton V V., Kovalevsky A V., Tsipis E V., Viskup AP, Naumovich EN, Jurado JR, et al. Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O 3-δ perovskites. J Solid State Electrochem 2003;7:30-6. doi:10.1007/s10008-002-0286-3. open in new tab
  59. Jurado JR, Figueiredo FM, Gharbage B, Frade JR. Electrochemical permeability of Sr- 0.7(Ti,Fe)O3-delta materials. Solid State Ionics 1999;118:89-97. doi:Doi: 10.1016/s0167- 2738(98)00471-8. open in new tab
  60. Menesklou W, Schreiner H-J, Härdtl KH, Ivers-Tiffée E. High temperature oxygen sensors based on doped SrTiO3. Sensors Actuators B Chem 1999;59:184-9. doi:http://dx.doi.org/10.1016/S0925-4005(99)00218-X. open in new tab
  61. Moos R, Menesklou W, Schreiner HJ, Härdtl KH. Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sensors Actuators, B Chem 2000;67:178-83. doi:10.1016/S0925-4005(00)00421-4. open in new tab
  62. Steinsvik S, Bugge R, Gjønnes J, Taftø J, Norby T. The defect structure of SrTi 1−x Fe x O 3−y ( x = 0-0.8) investigated by electrical doncutivity measurements and electron energy loss spectroscopy (EELS). J Phys Chem Solids 1997;58:969-76. doi:10.1016/S0022- 3697(96)00200-4. open in new tab
  63. Yu X, Long W, Jin F, He T. Cobalt-free perovskite cathode materials SrFe1-xTixO3-δand performance optimization for intermediate-temperature solid oxide fuel cells. Electrochim Acta 2014;123:426-34. doi:10.1016/j.electacta.2014.01.020. open in new tab
  64. Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 2000;129:63-94. doi:10.1016/S0167- 2738(99)00318-5. open in new tab
  65. Tsipis E V., Kharton V V. Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 2007;12:1039-60. doi:10.1007/s10008-007- 0468-0. open in new tab
  66. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, et al. Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Adv Energy Mater 2015;5:n/a-n/a. doi:10.1002/aenm.201500537. open in new tab
  67. Chrzan A, Gazda M, Szymczewska D, Jasinski P. Interaction of SrTi0.65Fe0.35O3-δ with LaNi0.6Fe0.4O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.8Gd0.2O2-δ. Procedia Eng 2014;98:101-4. doi:10.1016/j.proeng.2014.12.494. open in new tab
  68. Takeda Y. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia. J Electrochem Soc 1987;134:2656. doi:10.1149/1.2100267. open in new tab
  69. Esquirol A, Brandon NP, Kilner JA, Mogensen M. Electrochemical Characterization of La[sub open in new tab
  70. Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. J Electrochem Soc 2004;151:A1847. doi:10.1149/1.1799391. open in new tab
  71. Boukamp BA, Rolle A. Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes. Solid State Ionics 2018;314:103-11. doi:10.1016/j.ssi.2017.11.021. open in new tab
  72. Boukamp B a., Hildenbrand N, Nammensma P, Blank DH a. The impedance of thin dense oxide cathodes. Solid State Ionics 2011;192:404-8. doi:10.1016/j.ssi.2010.05.037. open in new tab
  73. Hildenbrand N. Improving the electrolyte -cathode assembly for mt-SOFC. 2011. open in new tab
  74. Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 2004;104:4791-843. doi:10.1021/cr020724o. open in new tab
  75. Lu Y, Kreller C, Adler SB. Measurement and Modeling of the Impedance Characteristics of Porous La[sub 1−x]Sr[sub x]CoO[sub 3−δ] Electrodes. J Electrochem Soc 2009;156:B513. doi:10.1149/1.3079337. open in new tab
  76. Dailly J, Fourcade S, Largeteau A, Mauvy F, Grenier JC, Marrony M. Perovskite and A2MO4- type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochim Acta 2010;55:5847-53. doi:10.1016/j.electacta.2010.05.034. open in new tab
  77. Nenning A, Opitz AK, Huber TM, Fleig J. A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy. Phys Chem Chem Phys 2014;16:22321-36. doi:10.1039/c4cp02467b. open in new tab
  78. dos Santos-Gómez L, Porras-Vázquez JM, Losilla ER, Marrero-López D. Improving the efficiency of layered perovskite cathodes by microstructural optimization. J Mater Chem A 2017:7896-904. doi:10.1039/C6TA10946B. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

Referenced datasets

zobacz wszystkie (15)

seen 171 times

Recommended for you

Meta Tags