Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment - Publication - Bridge of Knowledge

Search

Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment

Abstract

This paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine learning and deep learning techniques to enhance object tracking in intelligent traffic management systems, contributing to the evolving landscape of urbanization. Experimental results highlight the challenges and potential improvements in tracking accuracy, particularly in addressing object misclassification. In the conducted study, the proposed method achieved average precision = 0.95.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Conference activity
Type:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Language:
English
Publication year:
2024
Bibliographic description:
Kocejko T., Neumann T., Mazur-Milecka M., Kowalczyk N., Rumiński J., Kang-Hyun J., Kaszyński M., Ludwisiak T.: Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment// / : , 2024,
DOI:
Digital Object Identifier (open in new tab) 10.1109/iwis62722.2024.10706028
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 24 times

Recommended for you

Meta Tags