Fabrication methods of smart composite coatings - review - Publication - Bridge of Knowledge

Search

Fabrication methods of smart composite coatings - review

Abstract

Postoperative bacterial infections are one of the main reasons for unsuccessful implantation of long-term implants. The development of bacterial infection requires antibiotic therapy, in extreme cases a reimplantation procedure is necessary. In order to provide materials for implants with antibacterial properties, they are subjected to modifications to create a coating that will release the drug substance, when the inflammation occurs. Significant interest is now gained by the so-called smart polymers, that react to the stimuli from the external environment such as pH change, temperature change, the influence of UV-VIS radiation or interaction of electric and magnetic fields. When designing drug delivery systems, the characteristics of the inflamed tissue may be taken into account, because they are characterized by increased temperature and reduced pH. It would, therefore, be reasonable to create biopolymer coatings that under these conditions degrade and release the drug substance. However, the problem is the controlled release of the drug substance trapped in the biopolymer matrix. This review paper presents most often used methods of smart biopolymer coatings production, which release the drug substance in a controlled manner. Methods such as electrophoretic deposition, dip-coating, spin-coating, and layer-by-layer are discussed, including process parameters, steps of the coating production, possible post-processing and examples of smart coatings produced using these methods. Each of these methods offers a wide range of process parameters, by changing these parameters it is possible to fine-tune the properties of the coatings produced to the desired values. Extensive research is needed to determine the optimal process parameters that will allow the production of coatings with the desired properties.

Cite as

Full text

download paper
downloaded 130 times
Publication version
Accepted or Published Version
License
Copyright (2019 by ISASDMT)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
European Journal of Medical Technologies pages 53 - 59,
ISSN: 2353-1029
Language:
English
Publication year:
2019
Bibliographic description:
Pawłowski Ł., Bartmański M., Zieliński A.: Fabrication methods of smart composite coatings - review// European Journal of Medical Technologies. -., iss. 3(24) (2019), s.53-59
Bibliography: test
  1. Hornberger H, Virtanen S, Boccaccini AR, Biome- dical coatings on magnesium alloys -A review, Acta Biomater 2012; 8: 2442-2455. doi:10.1016/j. actbio.2012.04.012. open in new tab
  2. Zhao L, Chu PK, Zhang Y, Wu Z, Antibacterial co- atings on titanium implants, J. Biomed. Mater. open in new tab
  3. Res. -Part B Appl. Biomater 2009; 91: 470-480. doi:10.1002/jbm.b.31463. open in new tab
  4. Schmaljohann D, Thermo-and pH-responsive po- lymers in drug delivery, Adv. Drug Deliv. Rev. 2006; 58: 1655-1670. doi:10.1016/j.addr.2006.09.020. open in new tab
  5. Świeczko-Żurek B, Bartmański M, Investigations of Titanium Implants Covered with Hydroxyapa- tite Layer, Adv. Mater. Sci. 2016; 16 . doi:10.1515/ adms-2016-0011. open in new tab
  6. Corni I, Ryan MP, Boccaccini AR, Electrophoretic deposition: From traditional ceramics to nano- technology, J. Eur. Ceram. Soc. 2008; 28: 1353- 1367. doi:10.1016/j.jeurceramsoc.2007.12.011. open in new tab
  7. Besra L, Liu M, A review on fundamentals and applications of electrophoretic deposition (EPD), open in new tab
  8. Prog. Mater. Sci. 2007; 52: 1-61. doi:10.1016/j. pmatsci.2006.07.001. open in new tab
  9. Miola M, Cordero-Arias L, Verné E, Ciraldo FE, Boc- caccini AR. , Electrophoretic Deposition of Chi- tosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr, Front. Bioeng. Biotechnol. 2015; 3: 1-13. doi:10.3389/fbioe.2015.00159. open in new tab
  10. Chen Q, Cordero-Arias L, Roether J.A, Cabanas-Po- lo S, Virtanen S, Boccaccini A.R, Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electro- phoretic deposition, Surf. Coatings Technol. 2013; 233: 49-56. doi:10.1016/j.surfcoat.2013.01.042. open in new tab
  11. Ma K, Gong L, Cai X, Huang P, Cai J, Huang D, Jiang T, A green single-step procedure to synthesize ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial proper- ties, Int. J. Nanomedicine. 2017; 12: 3665-3679. doi:10.2147/IJN.S130857. open in new tab
  12. Qi H, Chen Q, Ren H, Wu X, Liu X, Lu T, Electropho- retic deposition of dexamethasone-loaded ge- latin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis, Colloids Surfaces B Biointerfaces. 2018; 169: 249- 256. doi:10.1016/j.colsurfb.2018.05.029. open in new tab
  13. Copyright © 2019 by ISASDMT open in new tab
  14. Song J, Chen Q, Zhang Y, Diba M, Kolwijck E, Shao J, Jansen JA, Yang F, Boccaccini AR, Leeuwenburgh S.C.G, Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres to Tune the Release of Antibiotics, ACS Appl. Mater. Interfaces. 2016; 8: 13785-13792. doi:10.1021/ acsami.6b03454. open in new tab
  15. Livingston M, Tan A, Coating Techniques and Rele- ase Kinetics of Dru g-Eluting Stents, J. Med. Devi- ce. 2015; 10: 010801. doi:10.1115/1.4031718. open in new tab
  16. Fasiku VO, Owonubi SJ, Mukwevho E, Aderibigbe B, Sadiku ER, Lemmer Y, Ibrahim ID, Mochane J, Daramola OO, Polymeric Materials in Coatings for Biomedical Applications 2019; 481-518. open in new tab
  17. Li Y, Liu X, Tan L, Ren L, Wan P, Hao Y, Qu X, Yang K., Dai K, Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption, J. Mater. Sci. Technol. 2016; 32: 865-873. do- i:10.1016/j.jmst.2016.07.013. open in new tab
  18. Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D, Advanced biopolymer-co- ated drug-releasing titania nanotubes (TNTs) im- plants with simultaneously enhanced osteoblast adhesion and antibacterial properties, Colloids Surfaces B Biointerfaces. 2015; 130: 255-263. do- i:10.1016/j.colsurfb.2015.04.021. open in new tab
  19. Wang T, Weng Z, Liu X, Yeung KWK, Pan H, Wu S., Controlled release and biocompatibility of po- lymer/titania nanotube array system on tita- nium implants, Bioact. Mater. 2017; 2: 44-50. do- i:10.1016/j.bioactmat.2017.02.001. open in new tab
  20. Dobrzanski L.A, Szindler, Sol gel TiO2 antireflec- tion coatings for silicon solar cells, J. Achiev. Mater. Manuf. Eng. 2012; 52: 7-14. open in new tab
  21. Tong M, Yao, Bohm, Siva, Song, Graphene based materials and their composites as coatings, Au- stin J. Nanomedicine Nanotechnol. 2013; 1: 1003. http://austinpublishinggroup.com/nanomedici- ne-nanotechnology/fulltext/ajnn-v1-id1003.php.
  22. Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, Luo Z, Hu Y, Tang L, Fabrication of selenium-deposited and chitosan-coated titania nanotubes with antican- cer and antibacterial properties, Colloids Surfaces B Biointerfaces. 2013; 103: 149-157. doi: 10.1016/j. colsurfb.2012.10.022. open in new tab
  23. Huang Y, Dan N, Dan W, Zhao W, Bai Z, Chen Y, Yang C, Facile fabrication of gelatin and polycaprolacto- ne based bilayered membranes via spin coating method with antibacterial and cyto-compatible properties, Int. J. Biol. Macromol. 2019; 124: 699- 707. doi:10.1016/j.ijbiomac.2018.11.262. open in new tab
  24. Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke D.M, Stana-Kleinschek K, Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials, Cellulose. 2015; 22: 749-761. doi:10.1007/s10570-014-0515-9. open in new tab
  25. Li C, Sun Y, Bai H, Shi G, Sheng K, Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic de- vices, Polymer (Guildf ). 2011; 52: 5567-5572. doi: 10.1016/j.polymer.2011.10.001. open in new tab
  26. Ariga K, Hill JP, Ji Q, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application, Phys. Chem. Chem. Phys. 2007; 9: 2319-2340. doi:10.1039/b700410a. open in new tab
  27. Del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sönnichsen C, Parak W.J, LbL mul- tilayer capsules: Recent progress and future outlo- ok for their use in life sciences, Nanoscale. 2010; 2: 458-467. doi:10.1039/b9nr00341j. open in new tab
  28. Sato K, Yoshida K, Takahashi S, ichi J. Anzai, PH-and sugar-sensitive layer-by-layer films and microcap- sules for drug delivery, Adv. Drug Deliv. Rev. 2011; 63: 809-821. doi:10.1016/j.addr.2011.03.015. open in new tab
  29. Zhong Y, Whittington CF, Zhang L, Haynie D.T, Con- trolled loading and release of a model drug from polypeptide multilayer nanofilms, Nanomedicine Nanotechnology, Biol. Med. 2007; 3: 154-160. do- i:10.1016/j.nano.2007.03.002. open in new tab
  30. Jiang B, Li B, Tunable drug loading and release from polypeptide multilayer nanofilms, Int. J. Na- nomedicine. 2009; 4: 37-53.
  31. Niu J, Shi F, Liu Z, Wang Z, Zhang X, Reversible disulfide cross-linking in layer-by-layer films: Pre- assembly enhanced loading and pH/reductant dually controllable release, Langmuir. 2007; 23: 6377-6384. doi:10.1021/la063670c. open in new tab
  32. Kharlampieva E, Izumrudov VA, Sukhishvili SA, Electrostatic layer-by-layer self-assembly of po- ly(carboxybetaine)s: Role of zwitterions in film growth, Macromolecules. 2007; 40: 3663-3668. doi:10.1021/ma062811e. open in new tab
  33. Copyright © 2019 by ISASDMT open in new tab
  34. Wood K.C, Boedicker JQ, David A, Lynn M, Paula T. open in new tab
  35. Hammond, Tunable Drug Release from Hydrolyti- cally Degradable Layer-by-Layer Thin Films, Lang- muir. 2005; 21: 1603-1609. doi:10.1021/LA0476480. open in new tab
  36. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang X.J, PH-Sensitive nano-systems for drug de- livery in cancer therapy, Biotechnol. Adv. 2014; 32: 693-710. doi:10.1016/j.biotechadv.2013.11.009. open in new tab
Verified by:
Gdańsk University of Technology

seen 198 times

Recommended for you

Meta Tags