Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks - Publication - Bridge of Knowledge

Search

Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks

Abstract

Dynamic Electrochemical Impedance Spectroscopy (DEIS) was presented as novel method for diagnostic and monitoring of PEMFC stack and single cells operation. Impedance characteristics were obtained simultaneously with current - voltage characteristics for stack and each individual cell. Impedance measurements were performed in galvanodynamic mode. It allowed to compare performance of each cell and identification of faulty cell operation for activation, ohmic and mass transfer losses regions. The biggest difference in impedance value between healthy and faulty cell was registered for mass transfer losses region. The authors discussed the statistical selection of an equivalent circuit based on the course of χ2 value in the function of current.

Citations

  • 2 4

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cite as

Full text

download paper
downloaded 55 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ELECTROCHIMICA ACTA no. 292, pages 383 - 389,
ISSN: 0013-4686
Language:
English
Publication year:
2018
Bibliographic description:
Darowicki K., Janicka E., Mielniczek M., Zieliński A., Gaweł Ł., Mitzel J., Hunger J.: Implementation of DEIS for reliable fault monitoring and detection in PEMFC single cells and stacks// ELECTROCHIMICA ACTA. -Vol. 292, (2018), s.383-389
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2018.09.105
Bibliography: test
  1. C.A. Cottrell, S.E. Grasman, M. Thomas, K.B. Martin, J.W. Sheffield, Strategies for stationary and portable fuel cell markets, Int. J. Hydrog. Energy. 36 (2011) 7969-7975. doi:10.1016/j.ijhydene.2011.01.056. open in new tab
  2. J. Hamelin, K. Agbossou, A. Laperrière, F. Laurencelle, T..
  3. Bose, Dynamic behavior of a PEM fuel cell stack for stationary applications, Int. J. Hydrog. Energy. 26 (2001) 625-629. doi:10.1016/S0360-3199(00)00121-X. open in new tab
  4. Y. Devrim, H. Devrim, I. Eroglu, Development of 500 W PEM fuel cell stack for portable power generators, Int. J. Hydrog. Energy. 40 (2015) 7707-7719. doi:10.1016/j.ijhydene.2015.02.005. open in new tab
  5. F. Achmad, S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, Passive direct methanol fuel cells for portable electronic devices, Appl. Energy. 88 (2011) 1681-1689. doi:10.1016/j.apenergy.2010.11.012. open in new tab
  6. B. Allaoua, K. Asnoune, B. Mebarki, Energy management of PEM fuel cell/ supercapacitor hybrid power sources for an electric vehicle, Int. J. Hydrog. Energy. 42 (2017) 21158-21166. doi:10.1016/j.ijhydene.2017.06.209. open in new tab
  7. Z. Hou, R. Wang, K. Wang, W. Shi, D. Xing, H. Jiang, Failure mode investigation of fuel cell for vehicle application, Front. Energy. 11 (2017) 318-325. doi:10.1007/s11708-017-0488-0. open in new tab
  8. M. Vinothkannan, A.R. Kim, G. Gnana kumar, D.J. Yoo, Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells, RSC Adv. 8 (2018) 7494-7508. doi:10.1039/C7RA12768E. open in new tab
  9. M. Vinothkannan, A.R. Kim, G. Gnana kumar, J.-M. Yoon, D.J. Yoo, Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe 3 O 4 -FGO) membrane for application in high temperature and low humidity fuel cells, RSC Adv. 7 (2017) 39034-39048. doi:10.1039/C7RA07063B. open in new tab
  10. A. Sahin, The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells, Electrochimica Acta. 271 (2018) 127-136. doi:10.1016/j.electacta.2018.03.145. open in new tab
  11. M. Gil, X. Ji, X. Li, H. Na, J. Eric Hampsey, Y. Lu, Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications, J. Membr. Sci. 234 (2004) 75-81. doi:10.1016/j.memsci.2003.12.021. open in new tab
  12. B. Wang, H. Deng, K. Jiao, Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation, Appl. Energy. 225 (2018) 1-13. doi:10.1016/j.apenergy.2018.04.058. open in new tab
  13. P. Liang, D. Qiu, L. Peng, P. Yi, X. Lai, J. Ni, Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates, Energy Convers. Manag. 169 (2018) 334-344. doi:10.1016/j.enconman.2018.05.069. open in new tab
  14. P. Gabrielli, M. Gazzani, M. Mazzotti, Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment, Appl. Energy. 221 (2018) 557-575. doi:10.1016/j.apenergy.2018.03.149. open in new tab
  15. D. Benouioua, D. Candusso, F. Harel, L. Oukhellou, Multifractal Analysis of Stack Voltage Based on Wavelet Leaders: A New Tool for PEMFC Diagnosis, Fuel Cells. 17 (2017) 217-224. doi:10.1002/fuce.201600029. open in new tab
  16. E. Denisov, Y.K. Evdokimov, R.R. Nigmatullin, S. Martemianov, A. Thomas, N. Adiutantov, Spectral method for PEMFC operation mode monitoring based on electrical fluctuation analysis, Sci. Iran. 24 (2017) 1437-1447. doi:10.24200/sci.2017.4125. open in new tab
  17. M.A. Rubio, K. Bethune, A. Urquia, J. St-Pierre, Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise, Int. J. Hydrog. Energy. 41 (2016) 14991-15001. doi:10.1016/j.ijhydene.2016.05.292. open in new tab
  18. E. Frappé, A. De Bernardinis, O. Bethoux, D. Candusso, F. Harel, C. Marchand, G. Coquery, PEM fuel cell fault detection and identification using differential method: simulation and experimental validation, Eur. Phys. J. Appl. Phys. 54 (2011) 23412. doi:10.1051/epjap/2011100277. open in new tab
  19. Y.-H. Lee, S. Yoo, J. Kim, Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method, Trans. Korean Soc. Automot. Eng. 22 (2014) 76-83. doi:10.7467/KSAE.2014.22.7.076. open in new tab
  20. EIS Diagnosis for PEM Fuel Cell Performance, in: Electrochem. Impedance Spectrosc. PEM Fuel Cells, Springer London, London, 2010: pp. 193-262. doi:10.1007/978-1-84882-846-9_5. open in new tab
  21. E. Ramschak, V. Peinecke, P. Prenninger, T. Schaffer, W. Baumgartner, V. Hacker, Online stack monitoring tool for dynamically and stationary operated fuel cell systems, Fuel Cells Bull. 2006 (2006) 12-15. doi:10.1016/S1464-2859(06)71207-X. open in new tab
  22. X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells, Springer London, London, 2010. doi:10.1007/978-1-84882-846-9. open in new tab
  23. Y. Li, J. Yang, J. Song, Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles, Renew. Sustain. Energy Rev. 67 (2017) 160- 172. doi:10.1016/j.rser.2016.09.030. open in new tab
  24. E.C. Kumbur, M.M. Mench, FUEL CELLS -PROTON-EXCHANGE MEMBRANE FUEL CELLS | Water Management, in: Encycl. Electrochem. Power Sources, Elsevier, 2009: pp. 828-847. doi:10.1016/B978-044452745-5.00862-5. open in new tab
  25. A. Şahin, İ. Ar, Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes, J. Power Sources. 288 (2015) 426-433. doi:10.1016/j.jpowsour.2015.03.188. open in new tab
  26. A. Ozden, M. Ercelik, Y. Devrim, C.O. Colpan, F. Hamdullahpur, Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells, Electrochimica Acta. 256 (2017) 196-210. doi:10.1016/j.electacta.2017.10.002. open in new tab
  27. M.J. Parnian, S. Rowshanzamir, A.K. Prasad, S.G. Advani, High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications, J. Membr. Sci. 556 (2018) 12-22. doi:10.1016/j.memsci.2018.03.083. open in new tab
  28. P. Mohanta, F. Regnet, L. Jörissen, Graphitized Carbon: A Promising Stable Cathode Catalyst Support Material for Long Term PEMFC Applications, Materials. 11 (2018) 907. doi:10.3390/ma11060907. open in new tab
  29. J. Jang, J.G. Lee, H.J. Hwang, O. Kwon, O.S. Jeon, Y. Ji, Y.G. Shul, Role of Nitrogen-Doped Carbon Nanofibers Inside Polymer Membranes for Enhancing Fuel Cell Performance, Energy Technol. 6 (2018) 998-1002. doi:10.1002/ente.201700642. open in new tab
  30. J. Maya-Cornejo, A. Garcia-Bernabé, V. Compañ, Bimetallic Pt-M electrocatalysts supported on single-wall carbon nanotubes for hydrogen and methanol electrooxidation in fuel cells applications, Int. J. Hydrog. Energy. 43 (2018) 872-884. doi:10.1016/j.ijhydene.2017.10.097. open in new tab
  31. C. de Beer, P.S. Barendse, P. Pillay, B. Bullecks, R. Rengaswamy, Classification of High- Temperature PEM Fuel Cell Degradation Mechanisms Using Equivalent Circuits, IEEE Trans. Ind. Electron. 62 (2015) 5265-5274. doi:10.1109/TIE.2015.2393292. open in new tab
  32. M. Pérez-Page, V. Pérez-Herranz, Study of the electrochemical behaviour of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy, Int. J. Hydrog. Energy. 39 (2014) 4009- 4015. doi:10.1016/j.ijhydene.2013.05.121. open in new tab
  33. I. Pivac, B. Šimić, F. Barbir, Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells, J. Power Sources. 365 (2017) 240-248. doi:10.1016/j.jpowsour.2017.08.087. open in new tab
  34. J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using Dynamic Electrochemical Impedance Spectroscopy, J. Electroanal. Chem. 778 (2016) 126-136. doi:10.1016/j.jelechem.2016.08.028. open in new tab
  35. J. Orlikowski, K. Darowicki, Investigations of pitting corrosion of magnesium by means of DEIS and acoustic emission, Electrochimica Acta. 56 (2011) 7880-7884. doi:10.1016/j.electacta.2010.12.021. open in new tab
  36. A. Arutunow, K. Darowicki, DEIS evaluation of the relative effective surface area of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion, Electrochimica Acta. 54 (2009) 1034-1041. doi:10.1016/j.electacta.2008.08.045. open in new tab
  37. J. Ryl, K. Darowicki, P. Slepski, Evaluation of cavitation erosion-corrosion degradation of mild steel by means of dynamic impedance spectroscopy in galvanostatic mode, Corros. Sci. 53 (2011) 1873-1879. doi:10.1016/j.corsci.2011.02.004. open in new tab
  38. P. Slepski, E. Janicka, A comprehensive analysis of impedance of the electrochemical cell, Russ. J. Electrochem. 50 (2014) 379-384. doi:10.1134/S1023193513090103. open in new tab
  39. P. Slepski, K. Darowicki, E. Janicka, A. Sierczynska, Application of electrochemical impedance spectroscopy to monitoring discharging process of nickel/metal hydride battery, J. Power Sources. 241 (2013) 121-126. doi:10.1016/j.jpowsour.2013.04.039. open in new tab
  40. P. Slepski, E. Janicka, K. Darowicki, B. Pierozynski, Impedance monitoring of fuel cell stacks, J. Solid State Electrochem. 19 (2015) 929-933. doi:10.1007/s10008-014-2676-8. open in new tab
  41. K. Darowicki, E. Janicka, P. Slepski, Study of Direct Methanol Fuel Cell Process Dynamics Using Dynamic Electrochemical Impedance Spectroscopy, Int. J. Electrochem. Sci. 7 (2012) 12090- 12097.
  42. European Stack Test project website. http://stacktest.zsw-bw.de/, 2015 (accessed 13 January 2018). open in new tab
  43. J. Mitzel, E. Gülzow, A. Kabza, J. Hunger, S.S. Araya, P. Piela, I. Alecha, G. Tsotridis, Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking, Int. J. Hydrog. Energy. 41 (2016) 21415-21426. doi:10.1016/j.ijhydene.2016.08.065. open in new tab
  44. P. Slepski, K. Darowicki, E. Janicka, G. Lentka, A complete impedance analysis of electrochemical cells used as energy sources, J. Solid State Electrochem. 16 (2012) 3539-3549. doi:10.1007/s10008-012-1825-1. open in new tab
  45. J. Wu, X.-Z. Yuan, J.J. Martin, H. Wang, FUEL CELLS -PROTON-EXCHANGE MEMBRANE FUEL CELLS | Life-Limiting Considerations, in: Encycl. Electrochem. Power Sources, Elsevier, 2009: pp. 848-867. doi:10.1016/B978-044452745-5.00894-7. open in new tab
  46. M. Ciureanu, R. Roberge, Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes, J. Phys. Chem. B. 105 (2001) 3531-3539. doi:10.1021/jp003273p. open in new tab
  47. S. Cruz-Manzo, R. Chen, P. Rama, Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy, Int. J. Hydrog. Energy. 38 (2013) 1702-1713. doi:10.1016/j.ijhydene.2012.08.141. open in new tab
  48. F.J. Pinar, M. Rastedt, A. Dyck, P. Wagner, Long-term Operation of High Temperature Polymer Electrolyte Membrane Fuel Cells with Fuel Composition Switching and Oxygen Enrichment, Fuel Cells. 18 (2018) 260-269. doi:10.1002/fuce.201700115. open in new tab
  49. P. Hong, J. Li, L. Xu, M. Ouyang, C. Fang, Modeling and simulation of parallel DC/DC converters for online AC impedance estimation of PEM fuel cell stack, Int. J. Hydrog. Energy. 41 (2016) 3004-3014. doi:10.1016/j.ijhydene.2015.11.129. open in new tab
  50. R. Makharia, M.F. Mathias, D.R. Baker, Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy, J. Electrochem. Soc. 152 (2005) A970. doi:10.1149/1.1888367. open in new tab
  51. K. Wiezell, P. Gode, G. Lindbergh, Steady-State and EIS Investigations of Hydrogen Electrodes and Membranes in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. 153 (2006) A749. doi:10.1149/1.2172559. open in new tab
  52. M.G. Hosseini, P. Zardari, Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt- Ru nanoparticles for oxygen reduction reaction in alkaline media, Appl. Surf. Sci. 345 (2015) 223-231. doi:10.1016/j.apsusc.2015.03.146. open in new tab
  53. A.Z. Weber, R.L. Borup, R.M. Darling, P.K. Das, T.J. Dursch, W. Gu, D. Harvey, A. Kusoglu, S. Litster, M.M. Mench, R. Mukundan, J.P. Owejan, J.G. Pharoah, M. Secanell, I.V. Zenyuk, A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc. 161 (2014) F1254-F1299. doi:10.1149/2.0751412jes. open in new tab
  54. T.E. Springer, Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy, J. Electrochem. Soc. 143 (1996) 587. doi:10.1149/1.1836485. open in new tab
  55. K. Darowicki, L. Gawel, Impedance Measurement and Selection of Electrochemical Equivalent Circuit of a Working PEM Fuel Cell Cathode, Electrocatalysis. 8 (2017) 235-244. doi:10.1007/s12678-017-0363-0. open in new tab
  56. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy: Orazem/Electrochemical, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008. doi:10.1002/9780470381588.ch19. open in new tab
  57. D. Conteau, C. Bonnet, D. Funfschilling, M. Weber, S. Didierjean, F. Lapicque, Detection of Liquid Water in PEM Fuel Cells' Channels: Design and Validation of a Microsensor, Fuel Cells. 10 (2010) 520-529. doi:10.1002/fuce.200900167. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 194 times

Recommended for you

Meta Tags