Methods of Assessing Degradation of Supercapacitors by Using Various Measurement Techniques - Publication - Bridge of Knowledge

Search

Methods of Assessing Degradation of Supercapacitors by Using Various Measurement Techniques

Abstract

This article presents the qualitative analyses of the construction of supercapacitor samples. The analyses are based on the suggested thermographic measurements as well as the technique of testing the inherent noise of the investigated element. The indicated assessment methods have been referred to the currently used parameters for the qualitative evaluation of supercapacitors. The approach described in this paper, which introduces additional parameters assessing worn out of supercapacitors, can be included in the so-called non-invasive measurement methods, which allow the assessment of the condition of the sample under test. This article presents the applied measurement stands and verifies of the applicability of measurement methods in relation to the currently used parameters allowing for the qualitative assessment of supercapacitors. The measurement method presented in this article was used to study prototypes of supercapacitors. The measurement results allow for more accurate characterization of the observed element. Conducted tests revealed, at the same time, that one of the proposed evaluation methods, based on measurements of inherent noise of tested supercapacitors, is a method predicting their degradation.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Applied Sciences-Basel no. 9, pages 1 - 11,
ISSN: 2076-3417
Language:
English
Publication year:
2019
Bibliographic description:
Galla S., Szewczyk A., Smulko J., Przygocki P.: Methods of Assessing Degradation of Supercapacitors by Using Various Measurement Techniques// Applied Sciences-Basel. -Vol. 9, iss. 11 (2019), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.3390/app9112311
Bibliography: test
  1. Yassine, M.; Fabris, D. Performance of Commercially Available Supercapacitors. Energies 2017, 10, 1340. [CrossRef] open in new tab
  2. Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868-1878. [CrossRef] open in new tab
  3. Beguin, F.; Frackowiak, E. Supercapacitors: Materials, Systems and Applications; open in new tab
  4. Sahay, K.; Dwivedi, B. Design and Analysis of Supercapacitors Energy Storage System for Energy Stabilization of Distribution Network. Electr. Power Qual. Util. J. 2009, 15, 25-32.
  5. Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model. J. Power Sour. 2007, 172, 468-475. [CrossRef] open in new tab
  6. Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors: Part II. Lifetime simulation model for dynamic applications. J. Power Sour. 2007, 173, 626-632. [CrossRef] open in new tab
  7. Gualous, H.; Louahlia, H.; Gallay, R. Supercapacitor Characterization and Thermal Modelling with Reversible and Irreversible Heat Effect. IEEE Trans. Power Electron. 2011, 26, 3402-3409. [CrossRef] open in new tab
  8. Chiang, C.-J.; Yang, J.-L.; Cheng, W.-C. Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J. Power Sour. 2013, 234, 234-243. [CrossRef] open in new tab
  9. Berrueta, A.; Martín, I.S.; Hernández, A.; Ursúa, A.; Sanchis, P. Electro-thermal modelling of a supercapacitor and experimental validation. J. Power Sour. 2014, 259, 154-165. [CrossRef] open in new tab
  10. Mejdoubi, A.E.; Chaoui, H.; Sabor, J.; Gualous, H. Remaining Useful Life Prognosis of Supercapacitors Under Temperature and Voltage Aging Conditions. IEEE Trans. Ind. Electron. 2018, 65, 4357-4367. [CrossRef] open in new tab
  11. Schaeffer, E.; Auger, F.; Shi, Z.; Guillemet, P.; Loron, L. Comparative Analysis of Some Parametric Model Structures Dedicated to EDLC Diagnosis. IEEE Trans. Ind. Electron. 2016, 63, 387-396. [CrossRef] open in new tab
  12. Szewczyk, A.; Sikula, J.; Sedlakova, V.; Majzner, J.; Sedlak, P.; Kuparowitz, T. Voltage Dependence of Supercapacitor Capacitance. Metrol. Meas. Syst. 2016, 23, 403. [CrossRef] open in new tab
  13. Szewczyk, A. Measurement of Noise in Supercapacitors. Metrol. Meas. Syst. 2017, 24, 645. [CrossRef] open in new tab
  14. Kopka, R.; Tarczyński, W. Measurement System for Determination of Supercapacitor Equivalent Parameters. Metrol. Meas. Syst. 2013, 20, 581. [CrossRef] open in new tab
  15. Sedlakova, V.; Sikula, J.; Majzner, J.; Sedlak, P.; Kuparowitz, T.; Buergler, B.; Vasina, P. Supercapacitor equivalent electrical circuit model based on charges redistribution by diffusion. J. Power Sour. 2015, 286, 58-65. [CrossRef] open in new tab
  16. Rizoug, N.; Bartholomeus, P.; Le Moigne, P. Study of the Ageing Process of a Supercapacitor Module Using Direct Method of Characterization. IEEE Trans. Energy Convers. 2012, 27, 220-228. [CrossRef] open in new tab
  17. Martynyuk, V.; Eromenko, O.; Boiko, J.; Kałaczyński, T. Diagnostics of supercapacitors. MATEC Web Conf. 2018, 182, 01009. [CrossRef] open in new tab
  18. Devillers, N.; Jemei, S.; Péra, M.-C.; Bienaimé, D.; Gustin, F. Review of characterization methods for supercapacitor modelling. J. Power Sour. 2014, 246, 596-608. [CrossRef] open in new tab
  19. Živčák, J.; Hudák, R.; Madarász, L.; Rudas, I.J. Methodology, Models and Algorithms in Thermographic Diagnostics; open in new tab
  20. Minkina, W.; Dudzik, S. Infrared Thermography: Errors and Uncertainties; open in new tab
  21. Meola, C. Infrared Thermography Recent Advances and Future Trends; Bentham Science: Sharjah, UAE, 2012. open in new tab
  22. Więcek, B.; De May, G. Termowizja W Podczerwieni: Podstawy i Zastosowania; Wydawnictwo PAK: Warsaw, Poland, 2011.
  23. Zhang, H.; Sfarra, S.; Sarasini, F.; Santulli, C.; Fernandes, H.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Maldague, X.P.V. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates. Appl. Sci. 2018, 8, 240. [CrossRef] open in new tab
  24. Djupkep Dizeu, F.B.; Maldague, X.; Bendada, A. Mapping of the Indoor Conditions by Infrared Thermography. J. Imaging 2016, 2, 10. [CrossRef] open in new tab
  25. Więcek, B.; Pacholski, K.; Olbrycht, R.; Kałuża, M.; Borecki, M.; Wittchen, W. Termografia i spektrometria w podczerwieni. Zastosowania przemysłowe; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2017.
  26. Galla, S.; Szewczyk, A.; Lentka, Ł. Electrochemical capacitor temperature fluctuations during charging/discharging processes. Metrol. Meas. Syst. 2019, 26, 23-35. open in new tab
  27. Galla, S. A Thermographic Measurement Approach to Assess Supercapacitor Electrical Performances. Appl. Sci. 2017, 7, 1247. [CrossRef] open in new tab
  28. Kiwilszo, M.; Smulko, J. Pitting corrosion characterization by electrochemical noise measurements on asymmetric electrodes. J. Solid State Electrochem. 2009, 13, 1681-1686. [CrossRef] open in new tab
  29. Konczakowska, A. 1/f noise of electrolytic capacitors as a reliability indicator. Qual. Reliab. Eng. Int. 1998, 14, 83-85. [CrossRef] open in new tab
  30. Szewczyk, A.; Łentka, L.; Smulko, J.; Babuchowska, P.; Béguin, F. Measurements of flicker noise in supercapacitor cells. In Proceedings of the 2017 International Conference on Noise and Fluctuations (ICNF), Vilnius, Lithuania, 20-23 June 2017; pp. 1-4. open in new tab
  31. ATLAS 1361 Multichannel Potencjostat Galwanostat I Tester. Available online: http://atlas-sollich.pl/ produkty/1361.htm (accessed on 6 October 2017). open in new tab
  32. VIGOcam v50.pdf. Available online: https://www.vigo.com.pl/pub/File/PRODUKTY/Thermal- imagingsystem/v50.pdf (accessed on 6 October 2017).
  33. Low-Noise Voltage Preamplifier SR560. Available online: https://www.thinksrs.com/downloads/pdfs/catalog/ SR560c.pdf (accessed on 20 March 2018).
  34. NI USB-4432. Available online: http://www.ni.com/pdf/manuals/372485e.pdf (accessed on 20 March 2018). open in new tab
  35. Przygocki, P.; Abbas, Q.; Gorska, B.; Béguin, F. High-energy hybrid electrochemical capacitor operating down to-40 • C with aqueous redox electrolyte based on choline salts. J. Power Sour. 2019, 427, 283-292. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 184 times

Recommended for you

Meta Tags