Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration - Publication - Bridge of Knowledge

Search

Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration

Abstract

In this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. The NDD film was used in the construction of the fiber optic sensor. This sensor is based on the Fabry–Pérot interferometer working in a reflective mode and the NDD film is utilized as a reflective layer of this interferometer. Application of the NDD film allowed us to obtain the sensor of hemoglobin concentration with linear work characteristics with a correlation coefficient (R2) equal to 0.988.

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 38 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 11, edition 1, pages 109 - 118,
ISSN: 1996-1944
Language:
English
Publication year:
2018
Bibliographic description:
Majchrowicz D., Kosowska M., Sankaran K. J., Struk P., Wąsowicz M., Sobaszek M., Haenen K., Szczerska M.: Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration// Materials. -Vol. 11, iss. 1 (2018), s.109-118
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma11010109
Bibliography: test
  1. Sarada, B.V.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72, 1632-1638. [CrossRef] [PubMed] open in new tab
  2. Shang, F.; Liu, Y.; Hrapovic, S.; Glennon, J.D.; Luong, J.H. Selective detection of dopamine using a combined permselective film of electropolymerized (poly-tyramine and poly-pyrrole-1-propionic acid) on a boron-doped diamond electrode. Analyst 2009, 134, 519-527. [CrossRef] [PubMed] open in new tab
  3. Stotter, J.; Haymond, S.; Zak, J.K.; Show, Y.; Cvackova, Z.; Swain, G.M. Optically Transparent Diamond Electrodes for UV-Vis and IR spectroelectrochemistry. Interface 2003, 12, 33-38.
  4. Sobaszek, M.; Skowroński, Ł.; Bogdanowicz, R.; Siuzdak, K.; Cirocka, A.; Zięba, P.; Gnyba, M.; Naparty, M.; Gołuński, Ł.; Płotka, P. Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes. Opt. Mater. 2015, 42, 24-34. [CrossRef] open in new tab
  5. Murib, M.S.; Tran, A.Q.; De Ceuninck, W.; Schöning, M.J.; Nesládek, M.; Serpengüzel, A.; Wagner, P. Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres. Phys. Status Solidi A 2012, 209, 1804-1810. [CrossRef] open in new tab
  6. Lee, J.; Park, S.-M. Direct electrochemical assay of glucose using boron-doped diamond electrodes. Anal. Chim. Acta 2005, 545, 27-32. [CrossRef] open in new tab
  7. Zimmer, A.; Williams, O.A.; Haenen, K.; Terryn, H. Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry. Appl. Phys. Lett. 2008, 93, 131910. [CrossRef] open in new tab
  8. Swain, G.M. The use of CVD diamond thin films in electrochemical systems. Adv. Mater. 1994, 6, 388-392. [CrossRef] open in new tab
  9. Bogdanowicz, R. Characterization of optical and electrical properties of transparent conductive boron-doped diamond thin films grown on fused silica. Metrol. Meas. Syst. 2014, 21. [CrossRef] open in new tab
  10. Gajewski, W.; Achatz, P.; Williams, O.A.; Haenen, K.; Bustarret, E.; Stutzmann, M.; Garrido, J.A. Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 2009, 79, 045206. [CrossRef] open in new tab
  11. Niedziałkowski, P.; Bogdanowicz, R.; Zięba, P.; Wysocka, J.; Ryl, J.; Sobaszek, M.; Ossowski, T. Melamine-modified Boron-doped Diamond towards Enhanced Detection of Adenine, Guanine and Caffeine. Electroanalysis 2016, 28, 211-221. [CrossRef] open in new tab
  12. Solomon, E.P.; Berg, L.R.; Martin, D.W.; Villee, C.A. Biologia, 1st ed.; Multico Oficyna Wydawnicza: Warsaw, Poland, 1996; ISBN 83-7073-090-6.
  13. Sawicki, W.; Malejczyk, J. Histologia; PZWL: Warsaw, Poland, 2012; ISBN 978-83-200-4349-5. open in new tab
  14. Harvey, J.W. Atlas of Veterinary Hematology: Blood and Bone Marrow of Domestic Animals;
  15. W.B. Saunders: Philadelphia, PA, USA, 2001; ISBN 13: 978-0-7216-6334-0. open in new tab
  16. Schaefer, D.M.W. Veterinary Hematology: A Diagnostic Guide and Color Atlas; open in new tab
  17. Harvey, J.W., Ed.; Elsevier Saunders: St. Louis, MO, USA, 2012; ISBN 9781-4377-0173-9.
  18. Weiss, D.J.; Wardrop, K.J. Schalm's Veterinary Hematology, 6th ed.; Wiley-Blackwell Publishing: Ames, IA, USA, 2010; pp. 120-170, 799-803, ISBN 978-0-8138-1798-9.
  19. Thrall, M.A.; Weiser, G.; Allison, R.W.; Campbell, T.W. Veterinary Hematology and Clinical Chemistry, 2nd ed.; Wiley & Sons: New York, NY, USA, 2012; ISBN 978-0-8138-1027-0.
  20. Kruusma, J.; Banks, C.E.; Compton, R.G. Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes. Anal. Bioanal. Chem. 2004, 379, 700-706. [CrossRef] [PubMed] open in new tab
  21. Zhang, J.; Oyama, M. Electroanalysis of myoglobin and hemoglobin with a boron-doped diamond electrode. Microchem. J. 2004, 78, 217-222. [CrossRef] open in new tab
  22. Auciello, O.; Sumant, A.V. Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam. Relat. Mater. 2010, 19, 699-718. [CrossRef] open in new tab
  23. Bhattacharyya, S.; Auciello, O.; Birrell, J.; Carlisle, J.A.; Curtiss, L.A.; Goyette, A.N.; Gruen, D.M.; Krauss, A.R.; Schlueter, J.; Sumant, A.; et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 2001, 79, 1441-1443. [CrossRef] open in new tab
  24. Williams, O.A.; Daenen, M.; D'Haen, J.; Haenen, K.; Maes, J.; Moshchalkov, V.V.; Nesládek, M.; Gruen, D.M. Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam. Relat. Mater. 2006, 15, 654-658. [CrossRef] open in new tab
  25. Sankaran, K.J.; Tai, N.H.; Lin, I.N. Microstructural evolution of diamond films from CH 4 /H 2 /N 2 plasma and their enhanced electrical properties. J. Appl. Phys. 2015, 117, 075303. [CrossRef] open in new tab
  26. Majchrowicz, D.; Kosowska, M.; Struk, P.; Jędrzejewska-Szczerska, M. Tailoring the Optical Parameters of Optical Fiber Interferometer With Dedicated Boron-Doped Nanocrystalline Diamond Thin Film. Phys. Status Solidi A 2017, 214. [CrossRef] open in new tab
  27. Ferrari, A.C.; Robertson, J. Origin of the 1150 cm −1 Raman mode in nanocrystalline diamond. Phys. Rev. B 2001, 63, 121405. [CrossRef] open in new tab
  28. Sobaszek, M.; Siuzdak, K.; Skowroński, Ł.; Bogdanowicz, R.; Pluciński, J. Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates. IOP Conf. Ser. Mater. Sci. Eng. 2016, 104, 012024. [CrossRef] open in new tab
  29. Michler, J.; von Kaenel, Y.; Stiegler, J.; Blank, E. Complementary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films. J. Appl. Phys. 1998, 83, 187-197. [CrossRef] open in new tab
  30. Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [CrossRef] open in new tab
  31. Shalini, J.; Sankaran, K.J.; Chen, H.-C.; Lee, C.-Y.; Tai, N.-H.; Lin, I.-N. Mediatorless N 2 incorporated diamond nanowire electrode for selective detection of NADH at stable low oxidation potential. Analyst 2014, 139, 778-785. [CrossRef] [PubMed] open in new tab
  32. Vlasov, I.I.; Ralchenko, V.G.; Goovaerts, E.; Saveliev, A.V.; Kanzyuba, M.V. Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A 2006, 203, 3028-3035. [CrossRef] open in new tab
  33. Jedrzejewska-Szczerska, M.; Gnyba, M.; Kosmowski, B. Low-Coherence Fibre-Optic Interferometric Sensors. Acta Phys. Pol. A 2011, 120, 621-662. [CrossRef] open in new tab
  34. Grattan, K.T.V.; Meggitt, B.T. Optical Fiber Sensor Technology; Springer: Dordrecht, The Netherlands, 1995; pp. 441-459, ISBN 978-94-010-4530-8. open in new tab
  35. Milewska, D.; Karpienko, K.; Jędrzejewska-Szczerska, M. Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor. Diam. Relat. Mater. 2016, 64, 169-176. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 165 times

Recommended for you

Meta Tags